(2004) The challenges of the environment and the human/biometric device interaction on biomertric system performance

751 views
681 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
751
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

(2004) The challenges of the environment and the human/biometric device interaction on biomertric system performance

  1. 1. The Challenges of the Environment and the Human / Biometric Device Interaction on Biometric System Performance Stephen J. Elliott, Ph.D., Eric P. Kukula Nathan C. Sickler Biometric Standards, Performance, and Assurance Laboratory Department of Industrial Technology, Purdue University West Lafayette, IN 47906, US sjelliott@tech.purdue.edu epkukula@tech.purdue.edu sicklern@purdue.edu Abstract performance, and how the image quality of a biometric sample changes with age. This paper outlines various research projects Furthermore, all of these factors may be that have been conducted at Purdue University compounded by changes in the environment, in the areas of environment, population, and such as the effects of variances in lighting, or devices. These areas are of interest as biometric camera placement with respect to face technologies are currently being implemented in identification [13]. The Face Recognition various business applications. The Vendor Test (FRVT) assessed if recent environmental research is concerned with the advancements in facial recognition systems performance of a facial recognition algorithm at actually improved performance. Ten vendors differing illumination levels. The second study participated in this test, which concluded that looks at population, which examines differences variation in outdoor lighting conditions, even in image quality with regard to population age. with images that were collected on the same day, The third study outlines dynamic signature drastically reduced system performance. verification and the issues associated with Specifically, the verification performance for the signing on different digitizers. best face recognition systems drops from 95% to 54% going from indoors to outdoors [2]. This poses the fundamental question: if an individual 1. Introduction enrolls at a drivers license bureau, then has their photograph taken in an environment with Biometric identification technology is defined controlled illumination for identification as the “automatic identification or identity purposes, facial recognition systems will verify verification of (living) individuals based on that individual 95% of the time in that behavioral and physiological characteristics [1]. environment. However, if the verification Biometric research centers on five fundamental attempt occurs outdoors, the facial recognition areas: data collection, signal processing, system performance would fail about 46% of the decision-making, transmission, and storage. time on the same day, even on the same day as Each of these areas has specific challenges enrollment, even eliminating template aging as a associated with them. The research described factor. In most real world scenarios, an below examines some of the problems associated individual will not be identified in the same with biometric authentication, namely the environment or on the same day as they enrolled; environment, population, and devices. These therefore more research is needed in this area to research areas are fundamental, because the assess system performance in a variety of widespread adoption of biometric technologies conditions. requires an understanding of how each of these Second, we have limited knowledge in the factors can affect the performance of the device. gathering of biometric templates in an aging Furthermore, it is also significant for both population (62 and older) and how this may government and industry to have research affect system performance as well as image disseminated on how biometric samples perform quality. Sickler and Elliott [2] found in over time, the resulting effects on system preliminary tests of fingerprinting, that elderly have poor ridge definition and lower moisture
  2. 2. Low Light - 8 lux Medium Light – 423 lux High Light - 800 lux Figure 1: Sample Verification Images content, resulting in drier images that are of light) and from the Department of Industrial lower quality than younger individuals (18-25 Technology office (high light). The third light year olds). Again, this is of significance as some level (medium light), was determined by taking states are implementing fingerprint recognition the mean of the other two light levels. Figure 1 for social services, as well as for drivers licenses. shows sample images illustrating the differences Third, there is a need to see how biometric between the three illumination levels. samples change when collected on different devices. In [3], over 15,000 dynamic signatures were collected on different mobile computing Kukula and Elliott completed a study devices, with the resulting signatures analyzed to that consisted of thirty individuals, of which 73% see which variables are stable over different were male, between the ages of 20 and 29 and digitizers. The purpose of this research was to Caucasian. Other represented ethnicities were test signature verification software on both Hispanic and Asian/Pacific Islander. 30% of the traditional digitizer tables and on population had facial hair, 24% wore glasses, wireless/mobile computing devices, in order to and 6% wore hats. Two participants also had assess how the dynamics of the signature signing problems during enrollment, which was on such devices change. Specifically, the attributable to the subjects wearing a hat; but researcher examined the differences on table- when it was removed, enrollment was successful. based digitizers (Wacom Intuit and the e-Pad), There were 6 enrollment failures out of 96 and over mobile computing devices (Palm IIIxe, attempts. Therefore, the overall failure to enroll Symbol 1500 and 1740 devices). The conclusion (FTE) rate was 6.25%. The failure to acquire of the research was that was significant (FTA) rates for low light (7-12 lux), medium differences in specific variables across different light (407-412 lux), and high light (800-815 lux) digitizers. Therefore, when deciding on were 0.92%, 0.65%, and 0%, respectively [13]. implementing dynamic signature verification The statistical analysis revealed that at a high using different digitizers, the device type and illumination enrollment, the illumination of the identity needs to be attached within the signature verification attempt was not statistically data. Therefore, the study of the environment, significant, based on the three tested illumination population, and device challenges is important to levels; low (7-12 lux), medium (407 – 412 lux), the field of biometrics, and is an area of study and high (800 – 815) lux. This signifies that currently being undertaken at Purdue University. when your lighting conditions are not constant for verification, the enrollment light level should 2. Biometric Performance and the be as high as possible. For the low and medium enrollments, the illumination used for the Environment. verification attempts was statistically significant, which meant that enrollments using low and Numerous experts, reports and papers have medium illumination, defined for this evaluation, stated that illumination greatly affects facial are not good to use when your environmental recognition performance, but have not provided lighting conditions are not constant for significant results that have showed this [4-12]. verification. This research also revealed that Kukula and Elliott [13] evaluated the there was a statistically significant difference performance of a commercially available 2D between enrollment illumination level and the face recognition algorithm across three verification illumination level at = 0.01, illumination levels. The illumination levels were insinuating that the enrollment illumination level determined by collecting data for sixty minutes is a better indicator of performance than the in 2 locations: a local campus restaurant (low illumination level of the verification attempts.
  3. 3. 3. Fingerprint Image Quality and the Elderly Discussion of poor image quality issues regarding elderly fingerprints occurs in the biometric literature [14-18]. Recently, an Ad Hoc group was formed by INCITS M1 to address image quality issues, and a working document has been drafted which addresses two types of image quality: effectiveness quality and fidelity quality. Effectiveness image quality is a score that determines the usability of an image from the biometric system standpoint, whereas fidelity image quality determines how closely images of the same individual match, without regard for system usability. In the research Figure 3. Visual display of the effectiveness addressed in this paper, effectiveness image quality of the low quality dry image. A green quality is a more robust measure, since poor area has good image quality, and all other colors image quality issues pose problems for indicate poor image quality. fingerprint recognition systems during the enrollment, verification, and identification processes. Therefore, the problem proposed by [2] was to determine the impact that particular variables, namely age and moisture, had on the effectiveness quality of fingerprint images. Non-uniform and irreproducible contact between the fingerprint and the platen of a fingerprint sensor can result in an image with poor effectiveness quality (Figures 2, 3 & 4). Non-uniform contact can result when the presented fingerprint is too dry (Figure 3) or too wet, and irreproducible contact occurs when the fingerprint ridges are semi-permanently or permanently changed due to manual labor, injuries, disease, scars or other circumstances Figure 4. Visual display of the effectiveness such as loose skin [19]. quality of the high quality normal image. A green area has good image quality, and all other colors indicate poor image quality. These two contact issues can result when an elderly user (62 and older) presents their fingerprint to the fingerprint device [19]. As individuals age, their skin becomes dryer, sags from the loss of collagen, and becomes thinner and loses fat due to the loss of elastin fibers, which decreases the firmness of the skin [20], and is likely to have incurred semi-permanent or permanent damage over the life of the individual. Two areas of the fingerprint recognition system, Figure 2. (a). Dry image (left) of low quality and data collection and signal processing, are a (b).normal image (right) of high quality. Both affected by non-uniform contact, irreproducible images were acquired from an optical sensor [2] contact, and the inability of interaction between the system and the user. The problem of interaction between the user and the system affects the sub-category of
  4. 4. presentation within the data collection silo. If the user cannot present their fingerprint to the device due to arthritis or other age related factors, then enrollment and subsequent verification or identification attempts are not possible through fingerprint recognition. Irreproducible and non- uniform contacts affect the sub-categories of feature extraction and quality control, within the signal-processing silo. Non-uniform contact tends to produce images of low quality, resulting in poor feature extraction of the presented fingerprint. Factors responsible for irreproducible contact, such as a temporary injury, introduce false minutiae points, creating an inaccurate representation of the individual’s Figure 5. Example Pearson correlation of image fingerprint, therefore reducing the effectiveness quality vs. age (ratio). quality of the fingerprint image. Furthermore, the effectiveness quality of a captured image is one The second hypothesis stated that there is no of the most important aspects for a biometric statistically significant difference between the system, as it is this quality parameter that fingerprint moisture content of the age groups determines whether a captured image is 18-25 and 62+. This hypothesis was rejected at acceptable for further use within the biometric α=0.01 for both index fingers when used with system, or not. The effectiveness quality of a the optical sensor and it was rejected for the right presented fingerprint image is developed and index finger in conjunction with the capacitance processed by the quality control function of the sensor. However, this hypothesis failed to be biometric system, and a score, based on the rejected at α=0.01 for the left index finger and image’s usability, is assigned to that image. It is the capacitance device. The overall finding of these quality scores and captured images that this study implies that more emphasis should be provide the data used by the biometric system to placed on an individual’s age, rather than the determine an accept/reject decision. moisture of the finger when developing a For this study two population age groups were fingerprint recognition system. used, the elderly (62+) and a younger (18-25 years) group, although no subject was excluded from participating based on age. However, data from subjects not falling into one of these age 4. Device Impacts on Dynamic groups were excluded from the analysis. The Signature Verification. minimum age was set to 18 years old since individuals this age and older are considered The use of written signature as a symbol for adults and do not need a guardian’s consent to business and personal transactions has a long participate. The maximum age of the younger history. Before the collection of data, a decision population was set to 25 years old, in order to on the acquisition of the signature signal is establish the typical age range for college or critical to the capture of the signature: on-line or university students. Two different devices were dynamic signature verification has various used in the research, capacitance and optical methods of acquiring data. Each of the various fingerprint sensors. The population size was 54 devices used in studies demonstrate different in both the 18-25 and 62+ categories. physical and measurement characteristics. The results show that the difference of According to [21]there is no consensus within effectiveness image quality data was statistically the research community on the best method of significant at α=0.01 for each index finger, as capturing this information, although the table- well as for each sensor. Therefore, the hypothesis based digitizer tablet is by far the most popular. stating that there is no statistically significant As the hardware progresses towards providing difference in the fingerprint quality between the solutions to mobile and electronic commerce, age groups 18-25 and 62+ is rejected at α=0.01. there may be a shift away from these table-based The basic findings are shown graphically in digitizers. Figure 5, the Pearson correlation of image Hardware properties can affect the variables quality vs. age (ratio). collected in the data acquisition process, and
  5. 5. therefore the quality and performance of the examiners can compare signatures captured on device. Different digitizers and software enable the same type of device. the capture of different parameters of the signature, at differing resolutions and speed. 5. Conclusion Typical acquisition features include 'equivalent- time-interval-sampled, x, y co-ordinates of pen- Environment, image quality, and device tip movements, pen pressure, pen altitude (the selection play an important role in the successful height of the pen from the digitizer) and pen implementation of a biometric system. The azimuth (the angle between the reference line research shown here indicates that there are still and the line connecting a point with the origin) some challenges associated with biometrics, but [22]. that these challenges can be overcome through The central focus of [3] was to examine algorithm improvements. The results of the face whether there are statistically significant recognition evaluation showed there are still differences in the measurable variables across significant challenges with regard to illumination devices. The volunteer crew was made up of 203 levels and face recognition especially at lower individuals whose demographics tended toward light levels, which correlates with other research the 19-26 age groups due to the composition of that has been done [4-12]. Further research is the testing environment. Although not planned that will examine the performance of a representative of the U.S. population except for three dimensional face recognition algorithm gender, it is representative of the population across three illumination levels, to examine how found in college and university environments. 3D face algorithms respond to illumination Males accounted for 66% of the volunteer group, changes. For image quality and fingerprint and females 35%, who were typically older than recognition, further research is planned that the males. Right handed members of the includes other sensors such as optical and population accounted for 91%, and left-handed thermal technologies, as well as swipe-based members accounted for 9%. capacitance sensors, small area capacitance Based upon the data, the major conclusion that sensors, and different forms of silicon sensing can be drawn from the study is that there are chips, such as radio frequency based sensors. significant differences in the variables across Also, a future study will examine the image devices, yet these variables are not significantly quality of fingerprints collected on devices in different within device families (Wacom, Palm, different outdoor settings. The results of such a and Interlink E-pad). When these devices are study would be important in understanding if grouped together, these variable differences image quality is increased or decreased over continue to be significant. Dynamic signature devices depending on the time of year or season. verification is used within the realms of For signature verification, a further study into electronic document management and contracts, forgeries will be undertaken shortly, that and will typically be verified only if the establishes which variables in a dynamic document validity is questioned. As a result, the signature verification algorithm are susceptible type of device needs to be attached in some way to forgery. to the signature data so that the document [3] Elliott, S., A comparison of on-line Dynamic Signature Trait Variables across 6. References different computing devices, in Industrial Technology. 2001, Purdue University: West [1] Wayman, J. and L. Alyea, Picking the Lafayette. Best Biometric for Your Application, in National Biometric Test Center Collected Works, J. [4] Alim, O., et al. Identity Verification Wayman, Editor. 2000, National Biometric Test Using Audio-Visual Features. in National Radio Center: San Jose. p. 269-275. Science Conference. 2000. Egypt. [2] Sickler, N. and S. Elliott, Evaluation of [5] Mansfield, A. and J. Wayman, Best Fingerprint Quality across an Elderly Practices in Testing and Reporting Population vis-a-vis 18-25 Year Olds, in Performances of Biometric Devices. 2002, Industrial Technology. 2003, Purdue University: National Physical Laboratory: Teddington, West Lafayette. England.
  6. 6. Paper presented at the International Biometrics [6] Phillips, P., P. Rauss, and S. Der, 2002, Amsterdam. FERET (Face Recognition Technology) Recognition Algorithm Development and Test [15] Buettner, D. J. (2001). A Large-Scale Report. 1996, U.S. Army Research Laboratory. Biometric Identification System at the Point of p. 73. Sale. Retrieved September 29, 2002, from the World Wide Web: [7] Phillips, P., et al., An Introduction to http://www.itl.nist.gov/div895/isis/bc2001/FINA Evaluating Biometric Systems. IEEE Computer L_BCFEB02/FINAL_2_Final%20Doug%20Bue Society, 2000(February 2000): p. 56 - 63. ttner%20Brief.pdf [8] Podio, F., Personal Authentication Through Biometric Technologies. IEEE, 2002. [16] Jain, A., Hong, L., & Pankanti, S. 4th International Workshop on Networked (2000, February). Biometrics: Promising Appliances: p. 57 -66. frontiers for emerging identification market. Comm. ACM, 91-98. [9] Sanderson, S. and J. Erbetta. Authentication for Secure Environments Based [17] Jain, A. K., & Pankanti, S. (2001). On Iris Scanning Technology. in IEEE Advances in Fingerprint Technology (2nd ed.). Colloquium on Visual Biometrics. 2000: IEEE. New York: Elsevier. [10] Sims, D., Biometric Recognition: Our [18] Jiang, X., & Ser, W. (2002). Online Hands, Eyes, and Faces Give Us Away. IEEE Fingerprint Template Improvement. IEEE Trans. Computer Graphics and Applications, 1994: p. Pattern Analysis and Machine Intelligence, 14-15. 24(8), 1121-1126. [11] Starkey, R. and I. Aleksander. Facial [19] Jain, A. K., Hong, L., Pankanti, S., & Recognition for Police Purposes Using Bolle, R. (1997). An Identity-Authentication Computer Graphics and Neural Networks. in System Using Fingerprints. Proc. IEEE, 85(9), IEEE Coloquium on Electronic Images and 1,365 - 1,388. Image Processing in Security and Forensic Science. 1990: IEEE. [20] American Academy of Dermatology, Mature Skin. 2002. [12] Sutherland, K., D. Renshaw, and P. Denyer. Automatic Face Recognition. in First [21] Leclerc, F. and R. Plamondon, International Conference on Intelligent Systems Automatic Signature Verification: The State of Engineering. 1992. Piscataway, NJ: IEEE. the Art - 1989 - 1993. International Journal of Pattern Recognition and Artificial Intelligence, [13] Kukula, E. and S. Elliott, The Effects of 1994. 8(3): p. 643-660. Varying Illumination Levels on FRS Algorithm Performance, in Industrial Technology. 2004, [22] Yamazaki, Y., Y. Mizutani, and N. Purdue University: West Lafayette. p. 98. Komatsu. Extraction of Personal Features from Stroke Shape, Writing Pressure, and Pen [14] Behrens, G. (2002, March). Assessing Inclination in Ordinary Characters. in Fifth the Stability Problems of Biometric Features. International Conference on Document Analysis and Recognition. 1998.

×