0
L O A
Victor Malka
LOA, ENSTA – CNRS - École Polytechnique,
91761 Palaiseau cedex, France
Laser-Plasma Accelerators : Stat...
L O A
Particle group
F. Ewald
J. Faure
Y. Glinec
A. Lifschitz
Laser group
F. Burgy
B. Mercier
J.Ph. Rousseau
A. Pukhov, Un...
L O A
E-field max ≈ few 10 MeV /meter (Breakdown)
R>Rmin Synchrotron radiation
Classical accelerator limitations
LEP at CE...
L O A
Why is a Plasma useful ?
• Plasma is an Ionized Medium High Electric Fields
epz nE ~~w
• Superconducting RF-Cavities...
L O A
Tajima&Dawson, PRL79
How to excite Relativistic Plasma waves?
The laser wake field
τlaser≈ Tp / 2
=>Short laser puls...
L O A
electron
Analogy:
t1 t2
t3
γe > > γφ > > 1
=> Emax(MeV)=( δ n/n)(nc/ne)
=>L deph. =(λ0/2)(nc /n e)
3/2
Emax=2(δn/n) ...
L O A INFN, Frascati, March 7 (2006)
L O A
Few MeV gain
Laser
Injected electrons
Few MeV
Injected electrons acceleration with laser :
Wake field (Beat wave)
IN...
L O A
The 3-MeV electrons are accelerated up to ≈ 4.5 MeV
1
10
100
1000
3.00 3.50 4.00 4.50 5.00 5.50 6.00
Numberofelectro...
L O A
Laser beam
Electron beam
1 mm
Direct production of e-beam
INFN, Frascati, March 7 (2006)
L O A
How to generate an electron beam?
Self-modulated Laser Wakefield Scheme
(Andreev, Sprangle, Antonsen 1992)
cτ >> λp
...
L O A
Wave breaking : from waves to particles
INFN, Frascati, March 7 (2006)
L O A
Relativistic wave breaking
A. Modena et al., Nature 1995
Multiple satellites : high amplitude plasma waves
broadenin...
L O A
5-pass Amp. :
200 mJ
8-pass pre-Amp. : 2 mJ
Oscillator : 2 nJ, 15 fs
Stretcher : 500 pJ, 400 ps
After Compression :
...
L O A
z
rayon2 mill.
2 mill.
z
rayon2 mill.
2 mill.
10
5
0
Phase(radians)
16
5
1
Density(10
18
cm
-3
)
0
210
18
410
18
610...
L O A
S. Semushin & V. Malka et al., RSI (2001)
Gas Jet Nozzle Design
For laser plasma studies
D crit
mm
D exit
mm
L opt
m...
L O A
10
100
10
19
10
20
E
max
(MeV)
n
e
(cm
-3
)
Emax
= 4γ p
2
me
c2 dn
n
Tunable electron beam : temperature
Electrons a...
L O A
Interaction chamber (inside)
Laser beam
electron beam
50 cm
INFN, Frascati, March 7 (2006)
L O A
Summary of FLWF previous results
V. Malka et al., Science, 298, 1596 (2002)
10
5
10
6
10
7
10
8
10
9
10
10
0 50 100 ...
L O A
Low Normalized Emittance
Emittance is indeed comparable with todays Accelerators
Electron Energy (MeV)
εn
(πmmmrad)
...
L O A
SMLWF : Multiple e-
bunches / FLWF Single e-
bunch
Electron bunches
laser
Electric field
Ps
V. Malka, Europhysics ne...
L O A
Laser pulse autocorrelation
time (fs)
no plasma ne=7.5×1018
cm-3
0
1.3
r(mm)
-150 0 150
• sensitive to
cτ/λp
• durat...
L O A
7 0 0
6 5 0
Z / λ
2 0
- 2 0
Y / λ
-20
20
X /λ
Quasi-Monoenergetic Electron Beams
In homogenous plasma : virtual or r...
L O A
Experimental Setup : single shot
measurement
INFN, Frascati, March 7 (2006)
L O A
2.0 x 1019
cm-3
Divergence = 6 mrad
Recent results on e-beam :
Spatial quality improvements
6.0 x 1018
cm-3
7.5 x 10...
L O A
Recent results on e-beam :
From Mono to maxwellian spectra
Electron density scan
V. Malka, et al., PoP 2005
INFN, Fr...
L O A
Charge in [150-190] MeV : (500 ±200) pC
Energy distribution improvements:
The Bubble regime
PIC
Experiment
Divergenc...
L O A
FLWF/BR : Beam charge improvement
DE/E=10%
FLWFBubble regime
0 20 50 100 200
Energy (MeV)
Charge(pC)
500
INFN, Frasc...
L O A
14 Groups have now measured
a quasi mono energetic e-beam
RAL & LBNL
50 pC
300 pC
very hot topic !
INFN, Frascati,...
L O A
Applications and New Science
X-rays:diffraction
γ-rays:radiography
Material science
Medicine
Radiotherapy
Proton-the...
L O A
Particle beam in medicine :
Radiotherapy
99% Radiotherapy with X ray
INFN, Frascati, March 7 (2006)
L O A
Radiation Therapy : context
Depth in tissue
Photon
dose
Photon beams are commonly used
for radiation therapy
tumor
t...
L O A
Medical application : Radiotherapy
VHE ELECTRONS
e beam
INFN, Frascati, March 7 (2006)
L O A
VHE Radiation Therapy
Depth in tissue
VHE dose
Reduced dose in save cells
Deep traitement
Good lateral contrast
tumo...
L O A
Monte Carlo simulation
of the dose deposition in water
Electron gun : quasi-monoenergetic (170MeV) with 0.5nC and 10...
L O A
Dose deposition profile in water
Glinec et al., Med. Phys. 33, 1 (2006)
e beam
INFN, Frascati, March 7 (2006)
L O A
In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM
Advantages: low divergence, point-like el...
L O A
Higher resolution: of the order of 400 µm
In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM...
L O A
Application for radiolysis :
H2O (e-
s, OH.
, H2O2, H3O+
, H2, H.
)
e-
Very important for:
• Biology
• Ionising radi...
L O A
radiolysis in the sub ps domain:
B. Brozek-Pluska, et al. Radiation and Chemistry, 72, 149-159 (2005).
INFN, Frascat...
L O A
Applications : X rays source
Laser based Synchrotron radiation
lu ~ 10-100 µm
E (MeV)
lu ~ cm
3 mm
100 m
Laser
Accél...
L O A
Betatron oscillation
r0 ~µm
Plasma wiggler
λu ~ 100 µm
K ~ 20>1,wiggler
λu ~ 100 µm
θ = Κ/γ
x
Helium
Plasma accelera...
L O A
Laser plasma acceleration has demonstrated
•Energy gains of 1 MeV to 200 MeV
•E-fields of 1 GV/m to 1000 GV/m
•Good ...
L O A
Laser plasma accelerator:
• enhance stability
•electron sources up to ≈ 1 GeV (nC, <1 ps):
Guiding or PW class laser...
L O A
After 5 Zr / 7.5 mm
0
0.5
1
1.5
2
2.5
800 1200 1600 2000
Energy (MeV)
f(E) (a.u.)
w0
=20µ m τ = 30 fs a0
= 4λ =0.8µm...
L O A
GeV acceleration in two-stages
GeV
Laser Plasma channel
•50-150 TW
•~50 fs
Nozzle
Gas-JetLaser
•170±20 MeV
•30 fs
•1...
L O A
GeV in low plasma density in plasma channel
n0=8 1016
cm-3
, 11 J - 140 TW
rc=40 μm, Δn=2 n0
L channel=4 cm 8 cm
12 ...
L O A
1% bandwidth for 1.2 GeV high quality e-beam
x
0
2
4
6
8
10
12
0 0,5 1 1,5
E(GeV)
dN/dE
n0=3 1016
cm-3
, 10 J-0.16 P...
L O A
Extreme Light Infrastructure
ELI
A science integrator that will bring many frontiers of contemporary
physics, i.e. r...
L O A
Fundamental
Interaction
Ultra-Relativistic
optics
Super hot plasma
Nuclear Physics
Astrophysics
General relativity
U...
L O A
Relativistics microelectronic
devices
Plasma cavity
100 µm1 m
RF cavity
Courtesy of W. Mori & L. da Silva
INFN, Fras...
L O A
1PW >1Hz 10PW, 1 Hz >100PW, 1Hz
ELI
ELI’s strategy for accelerator physics
GeV e-beam
.2 GeV p-beam
10 GeV e-beam
Ge...
L O A
Parameter designs Laser Plasma Accelerators
ELI : > 100 GeV
40
13
4
1.3
Q(nC)
1120120k2804702e151000120
1123.6k91502...
L O A
Electron beam energy and laser power evolution
1012
1013
1014
1015
1016
1017
LaserPower(W)
1
10
102
103
10
4
10
5
10...
L O A
Towards an Integrated Scientific Project for European Researcher : ELI
.. ..
. .
.
.
.
.
.
.
.
.
.
....ELI
....... ....
Upcoming SlideShare
Loading in...5
×

PDF

443

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
443
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
20
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Ce qu&amp;apos;on fait peut se comparer directement a un synchrotron.
    Dans un synchrotron, on accelere des e- puis on les fait osciller dans un onduleur. ca fait des X.
    Ici, c&amp;apos;est pareil sauf qu&amp;apos;on peut faire des periodes tres courtes et se contenter d&amp;apos;e- de plus faible energie.
    On fait tout dans un plasma. Ce qui correspond a convertir un faisceau laser en un faisceau de RX et on peut multiplier la frequence par envirion 100000 !
  • Transcript of "PDF"

    1. 1. L O A Victor Malka LOA, ENSTA – CNRS - École Polytechnique, 91761 Palaiseau cedex, France Laser-Plasma Accelerators : Status, Applications and Perspectives Laser beam Electron beam 1 mm INFN, Frascati, March 7 (2006)
    2. 2. L O A Particle group F. Ewald J. Faure Y. Glinec A. Lifschitz Laser group F. Burgy B. Mercier J.Ph. Rousseau A. Pukhov, University of Dusseldorf, Germany ELFSPL Collaborators E. Lefebvre, CEA/DAM Ile-de-France, France Supported by EEC under FP6 : CARE INFN, Frascati, March 7 (2006)
    3. 3. L O A E-field max ≈ few 10 MeV /meter (Breakdown) R>Rmin Synchrotron radiation Classical accelerator limitations LEP at CERN 27 km Circle road 31 km New medium : the plasma Energy = Length = $$$ ≈ PARIS INFN, Frascati, March 7 (2006)
    4. 4. L O A Why is a Plasma useful ? • Plasma is an Ionized Medium High Electric Fields epz nE ~~w • Superconducting RF-Cavities : Ez = 55 MV/m ez nE ~ Are Relativistic Plasma waves efficient ? Ez = 0.3 GV/m for 1 % Density Perturbation at 1017 cc-1 Ez = 300 GV/m for 100 % Density Perturbation at 1019 cc-1 INFN, Frascati, March 7 (2006)
    5. 5. L O A Tajima&Dawson, PRL79 How to excite Relativistic Plasma waves? The laser wake field τlaser≈ Tp / 2 =>Short laser pulse Laser pulse F≈-grad I Electron density perturbation Phase velocity vφepw=vglaser => close to c Analogy with a boat INFN, Frascati, March 7 (2006)
    6. 6. L O A electron Analogy: t1 t2 t3 γe > > γφ > > 1 => Emax(MeV)=( δ n/n)(nc/ne) =>L deph. =(λ0/2)(nc /n e) 3/2 Emax=2(δn/n) γφ 2mc2 L Deph. = λp γφ 2 Analogy electron/surfer INFN, Frascati, March 7 (2006)
    7. 7. L O A INFN, Frascati, March 7 (2006)
    8. 8. L O A Few MeV gain Laser Injected electrons Few MeV Injected electrons acceleration with laser : Wake field (Beat wave) INFN, Frascati, March 7 (2006)
    9. 9. L O A The 3-MeV electrons are accelerated up to ≈ 4.5 MeV 1 10 100 1000 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Numberofelectrons Energy (MeV) Noise due to scattered electrons Wakefield : Acceleration in 1.5 GV/m 2.5 J, 350 fs, 1017 W/cm2 , 0.5 mbar He Amiranoff et al. PRL 1998 LULI/LPNHE/LPGP/LSI/IC INFN, Frascati, March 7 (2006)
    10. 10. L O A Laser beam Electron beam 1 mm Direct production of e-beam INFN, Frascati, March 7 (2006)
    11. 11. L O A How to generate an electron beam? Self-modulated Laser Wakefield Scheme (Andreev, Sprangle, Antonsen 1992) cτ >> λp enhances WavebreakingPc(GW) = 17 ω0 2/ωp 2 Short Pulse Energetic Electrons if then excites INFN, Frascati, March 7 (2006)
    12. 12. L O A Wave breaking : from waves to particles INFN, Frascati, March 7 (2006)
    13. 13. L O A Relativistic wave breaking A. Modena et al., Nature 1995 Multiple satellites : high amplitude plasma waves broadening at higher densities Loss of coherence of the relativistic plasma waves Forward Raman Spectra 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 -2 -1 0 1 2 3 4 5Intensity(U.A.) spectral shift (ωp) ne=0.5x1019 cm-3 ne=1.5x1019 cm-3 Electrons/MeV 10 5 10 6 10 4 10 3 10 1 10 2 0 20 40 60 80 100 120 Energy (MeV) ne=0.5x1019 cm-3 ne=1.5x1019 cm-3 Electron spectra INFN, Frascati, March 7 (2006)
    14. 14. L O A 5-pass Amp. : 200 mJ 8-pass pre-Amp. : 2 mJ Oscillator : 2 nJ, 15 fs Stretcher : 500 pJ, 400 ps After Compression : 1 J, 30 fs, 0.8 µm, 10 Hz, 10 -7 2 m Nd:YAG : 10 J 4-pass, Cryo. cooled Amp. : < 3.5 J, 400 ps Salle Jaune Laser
    15. 15. L O A z rayon2 mill. 2 mill. z rayon2 mill. 2 mill. 10 5 0 Phase(radians) 16 5 1 Density(10 18 cm -3 ) 0 210 18 410 18 610 18 810 18 1 10 19 -4 -3 -2 -1 0 1 2 3 4 Rayon (mm) Densitédeneutre(cm-3) Neutral profil density measurements : the gas jet’s lab V. Malka et al., RSI (2000) INFN, Frascati, March 7 (2006)
    16. 16. L O A S. Semushin & V. Malka et al., RSI (2001) Gas Jet Nozzle Design For laser plasma studies D crit mm D exit mm L opt mm Mach exit N ext cm-3 1 2 6 3.5 18 x 10 19 1 3 7 4.75 7.5 x 10 19 1 5 10 7 2.7 x 10 19 1 10 15 10 0.75 x 10 19 0.5 1 4 3.3 16 x 10 19 0.5 2 5 5.5 4.5 x 10 19 0.5 3 5 6.2 2.1 x 10 19 0.5 5 7 9.5 0.7 x 10 19 D crit mm D exit mm L opt mm Mach exit N ext cm-3 INFN, Frascati, March 7 (2006)
    17. 17. L O A 10 100 10 19 10 20 E max (MeV) n e (cm -3 ) Emax = 4γ p 2 me c2 dn n Tunable electron beam : temperature Electrons are accelerated by epw V. Malka et al., PoP (2001) F/6 10 6 10 7 10 8 10 9 10 10 0 10 20 30 40 50 60 70 #electrons/MeV/sr W (MeV) Teff=8.1 MeV Teff =2.6MeV detection threshold Ne=1.5x1019 cm-3 Ne=1.5x1020 cm-3 INCREASE THE ACCELERATION LENGTH INFN, Frascati, March 7 (2006)
    18. 18. L O A Interaction chamber (inside) Laser beam electron beam 50 cm INFN, Frascati, March 7 (2006)
    19. 19. L O A Summary of FLWF previous results V. Malka et al., Science, 298, 1596 (2002) 10 5 10 6 10 7 10 8 10 9 10 10 0 50 100 150 200 Energy (MeV) Detection Threshold Numberofelectron(/MeV/sr) Experiments 10 6 10 7 10 8 10 9 10 10 10 11 0 50 100 150 200 250 Energy (MeV) Numberofelectron(/MeV/sr) 3D PIC simulations INFN, Frascati, March 7 (2006)
    20. 20. L O A Low Normalized Emittance Emittance is indeed comparable with todays Accelerators Electron Energy (MeV) εn (πmmmrad) 20 40 60 20 40 Ee- = ~ 55 MeV = ~ 3 π mm mradεn x (mm) x′(mrad) - Ee- = ~ 20 MeV = ~ 32 π mm mraden 0.5 -0.25 0 0.25 0.5 -0.05 0 0.05 S. Fritzler et al., PRL 04 INFN, Frascati, March 7 (2006)
    21. 21. L O A SMLWF : Multiple e- bunches / FLWF Single e- bunch Electron bunches laser Electric field Ps V. Malka, Europhysics news, April 2004 Ps/fs Electron bunch laser Electron density perturbation ne/n0-1 Electric field 0 fs INFN, Frascati, March 7 (2006)
    22. 22. L O A Laser pulse autocorrelation time (fs) no plasma ne=7.5×1018 cm-3 0 1.3 r(mm) -150 0 150 • sensitive to cτ/λp • duration depends on pulse shape (gaussian) •Initial duration τ ~ 38+/-2 fs •Final duration τ ~ 9.5+/-2 fs • Energy efficiency ~ 20 % J. Faure et al., Phys. Rev. Lett. 95, 205003 (2005) 0 0.2 0.4 0.6 0.8 1 -100 -50 0 50 100 150 autocorrelation t (fs) -100 -50 0 50 100 I(t)(arb.un.) t (fs) 8 fs Lineouts Possible shape 9.5 fs INFN, Frascati, March 7 (2006)
    23. 23. L O A 7 0 0 6 5 0 Z / λ 2 0 - 2 0 Y / λ -20 20 X /λ Quasi-Monoenergetic Electron Beams In homogenous plasma : virtual or real? 0 200 400 E, MeV t=350 t=450 t=550 t=650 t=750 t=850 5 108 1 109 Ne / MeV Time evolution of electron spectrum monoenergetic electron beam VLPL A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002) One stage LPA INFN, Frascati, March 7 (2006)
    24. 24. L O A Experimental Setup : single shot measurement INFN, Frascati, March 7 (2006)
    25. 25. L O A 2.0 x 1019 cm-3 Divergence = 6 mrad Recent results on e-beam : Spatial quality improvements 6.0 x 1018 cm-3 7.5 x 1018 cm-3 1.0 x 1019 cm-3 5.0 x 1019 cm-3 3.0 x 1019 cm-3 INFN, Frascati, March 7 (2006)
    26. 26. L O A Recent results on e-beam : From Mono to maxwellian spectra Electron density scan V. Malka, et al., PoP 2005 INFN, Frascati, March 7 (2006)
    27. 27. L O A Charge in [150-190] MeV : (500 ±200) pC Energy distribution improvements: The Bubble regime PIC Experiment Divergence = 6 mrad INFN, Frascati, March 7 (2006)
    28. 28. L O A FLWF/BR : Beam charge improvement DE/E=10% FLWFBubble regime 0 20 50 100 200 Energy (MeV) Charge(pC) 500 INFN, Frascati, March 7 (2006)
    29. 29. L O A 14 Groups have now measured a quasi mono energetic e-beam RAL & LBNL 50 pC 300 pC very hot topic ! INFN, Frascati, March 7 (2006)
    30. 30. L O A Applications and New Science X-rays:diffraction γ-rays:radiography Material science Medicine Radiotherapy Proton-therapy Radioisotopes PET Radiobiology Accelerator Physics e beam, and p beam ? and nuclear physics High current Chemistry Radiolysis by ultra short e or p beam New science on “ultrashort phenomena” INFN, Frascati, March 7 (2006)
    31. 31. L O A Particle beam in medicine : Radiotherapy 99% Radiotherapy with X ray INFN, Frascati, March 7 (2006)
    32. 32. L O A Radiation Therapy : context Depth in tissue Photon dose Photon beams are commonly used for radiation therapy tumor tumor Photon beam Dose INFN, Frascati, March 7 (2006)
    33. 33. L O A Medical application : Radiotherapy VHE ELECTRONS e beam INFN, Frascati, March 7 (2006)
    34. 34. L O A VHE Radiation Therapy Depth in tissue VHE dose Reduced dose in save cells Deep traitement Good lateral contrast tumor tumor VHE Dose INFN, Frascati, March 7 (2006)
    35. 35. L O A Monte Carlo simulation of the dose deposition in water Electron gun : quasi-monoenergetic (170MeV) with 0.5nC and 10mrad divergence Water target : 40cm x 4cm x 4cm divided in 100 pixels in all directions. Simulation parameters : CutRange=100um and N0 =105 electrons In collaboration with DKFZ e beam INFN, Frascati, March 7 (2006)
    36. 36. L O A Dose deposition profile in water Glinec et al., Med. Phys. 33, 1 (2006) e beam INFN, Frascati, March 7 (2006)
    37. 37. L O A In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM Advantages: low divergence, point-like electron source Application: high resolution γ-radiography INFN, Frascati, March 7 (2006)
    38. 38. L O A Higher resolution: of the order of 400 µm In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM γ-radiography results measured calculatedobject INFN, Frascati, March 7 (2006) Y. Glinec et al., Phys. Rev. Lett., 94 025003. (2005)
    39. 39. L O A Application for radiolysis : H2O (e- s, OH. , H2O2, H3O+ , H2, H. ) e- Very important for: • Biology • Ionising radiations effects In collaboration with Y. Gauduel ‘s group INFN, Frascati, March 7 (2006)
    40. 40. L O A radiolysis in the sub ps domain: B. Brozek-Pluska, et al. Radiation and Chemistry, 72, 149-159 (2005). INFN, Frascati, March 7 (2006)
    41. 41. L O A Applications : X rays source Laser based Synchrotron radiation lu ~ 10-100 µm E (MeV) lu ~ cm 3 mm 100 m Laser Accélérateur E (GeV) Rayonnement X Synchrotron Laser based Synchrotron radiation onduleur INFN, Frascati, March 7 (2006)
    42. 42. L O A Betatron oscillation r0 ~µm Plasma wiggler λu ~ 100 µm K ~ 20>1,wiggler λu ~ 100 µm θ = Κ/γ x Helium Plasma accelerator Acceleration field ~ TeV / meter EL  200 MeV X-ray beam: 109 ph/shot 20 mrad femtosecond K ~ γr0/λbet. Principles of the Betatron radiation INFN, Frascati, March 7 (2006) A. Rousse et al., Phys. Rev. Lett 93, 135005(2004)
    43. 43. L O A Laser plasma acceleration has demonstrated •Energy gains of 1 MeV to 200 MeV •E-fields of 1 GV/m to 1000 GV/m •Good e-beam quality : Emittance < 3πmm.mrad •charge at high energy •Quasi monoenergetic • Very high peak current : 100 kA Laser plasma accelerators advantages Provide e-beam with new parameters : short Provide e-beam with new parameters : high current Provide e-beam with new parameters : Collimated Compact and low cost The laser plasma accelerators status ゝゝゝゝゝゝゝゝゝゝ INFN, Frascati, March 7 (2006)
    44. 44. L O A Laser plasma accelerator: • enhance stability •electron sources up to ≈ 1 GeV (nC, <1 ps): Guiding or PW class laser systems Single Stage (Pukhov, Mori) (200TW) •Generate a tunable e-beam • applications of these electron sources •Compact XFEL Perspectives INFN, Frascati, March 7 (2006)
    45. 45. L O A After 5 Zr / 7.5 mm 0 0.5 1 1.5 2 2.5 800 1200 1600 2000 Energy (MeV) f(E) (a.u.) w0 =20µ m τ = 30 fs a0 = 4λ =0.8µmP =200TW np =1.5 ×1018 cm −3 * Gordienko et al, PoP 2005, UCLA& Golp groups PW class : GeV electron beams => XFEL INFN, Frascati, March 7 (2006)
    46. 46. L O A GeV acceleration in two-stages GeV Laser Plasma channel •50-150 TW •~50 fs Nozzle Gas-JetLaser •170±20 MeV •30 fs •10 mrad •1 J •10 TW •30 fs •Pulse guiding condition : Δn>1/πre rc 2 •Weak nonlinear effects ⇒ more control : a0 ~ 1-2 •High quality beams : Lb <λp ⇒ n0<1018 cm-3 rc Δn n0 Density profile INFN, Frascati, March 7 (2006)
    47. 47. L O A GeV in low plasma density in plasma channel n0=8 1016 cm-3 , 11 J - 140 TW rc=40 μm, Δn=2 n0 L channel=4 cm 8 cm 12 cm 4 2 3 1 0 0 800400 1200 dN/dE(a.u.) Energy (MeV) Electron bunch Electric field Electron bunch Electric field INFN, Frascati, March 7 (2006) V. Malka et al., Plasma Phys. Control. Fusion 47 (2005) B481–B490
    48. 48. L O A 1% bandwidth for 1.2 GeV high quality e-beam x 0 2 4 6 8 10 12 0 0,5 1 1,5 E(GeV) dN/dE n0=3 1016 cm-3 , 10 J-0.16 PW Lchannel = 18 cm, Emittance : 0.01mm.mrad V. Malka et al., to be published in NIM A Electron bunch Electric field Ultra-short bunch Applications: study of complex structures (X-ray diffraction, EXAFS) But ps time scale ps θ ~ µrad 10cm
    49. 49. L O A Extreme Light Infrastructure ELI A science integrator that will bring many frontiers of contemporary physics, i.e. relativistic plasma physics, particle physics, nuclear physics, gravitational physics, nonlinear field theory, ultrahigh pressure physics, and cosmology together. ELI will provide a new generation of compact accelerators delivering ultra short (fs-as) and energetic particle and radiation beams for European scientists. ELI will work in close contact with synchrotron X rays FEL community. ELI will also be an Extreme Light technology platform ready to reduce to practice the latest invention and discovery in relativistic engineering ELI INFN, Frascati, March 7 (2006)
    50. 50. L O A Fundamental Interaction Ultra-Relativistic optics Super hot plasma Nuclear Physics Astrophysics General relativity Ultra fast phenomena NLQED Relativistic Engineering ELI Extreme Light Infrastructure Exawatt Laser Secondary Beam Sources Electrons Positron ion Muon Neutrino Neutrons X rays γ rays a c c e l e r a t o r s S y n c h r . X f e l Attosecond optics Rel. Microelectronic Rel. Microphotonic Nuclear treatement Nuclear pharmacology Hadron therapy Radiotherapy Material science INFN, Frascati, March 7 (2006)
    51. 51. L O A Relativistics microelectronic devices Plasma cavity 100 µm1 m RF cavity Courtesy of W. Mori & L. da Silva INFN, Frascati, March 7 (2006)
    52. 52. L O A 1PW >1Hz 10PW, 1 Hz >100PW, 1Hz ELI ELI’s strategy for accelerator physics GeV e-beam .2 GeV p-beam 10 GeV e-beam GeV p-beam 50 GeV e-beam few GeV p-beam Beam lines for users e, p, X, γ, etc… synchroton & XFEL communities Fundamental physics Multi stage accelerator Single stage accelerator Accelerator community INFN, Frascati, March 7 (2006)
    53. 53. L O A Parameter designs Laser Plasma Accelerators ELI : > 100 GeV 40 13 4 1.3 Q(nC) 1120120k2804702e151000120 1123.6k91502e1630012 11.21200.28472e171001.2 1.123.60.009152e18300.12 E(Gev)E(J)L(m)W0 (μm)ne(cm-3 )τ (fs)P(PW) Golp and UCLA Group a0=4 INFN, Frascati, March 7 (2006)
    54. 54. L O A Electron beam energy and laser power evolution 1012 1013 1014 1015 1016 1017 LaserPower(W) 1 10 102 103 10 4 10 5 10 6 1930 1940 1950 1960 1970 1980 1990 2000 2010 « conventional » technology MaximaleElectronsEnergy(MeV) Years LULI   RAL  LOA   LOA *LLNL UCLA ILE ¤  KEK UCLA E L I ELI *LLNL *LUND INFN, Frascati, March 7 (2006)
    55. 55. L O A Towards an Integrated Scientific Project for European Researcher : ELI .. .. . . . . . . . . . . . ....ELI ....... . .. . INFN, Frascati, March 7 (2006)
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×