Björn Brembs Freie Universität Berlin
08.06.09 Björn Brembs, Freie Universität Berlin <ul><li>Prerequisites </li></ul><ul><ul><li>Spontaneous behavior </li></ul...
08.06.09 Björn Brembs, Freie Universität Berlin <ul><li>Basic research: Adaptive behavioral choice requires knowledge of t...
Basic research: how do different brains solve the problem of adaptive behavioral choice? 08.06.09 Björn Brembs, Freie Univ...
Basic research: how do different brains solve the problem of adaptive behavioral choice? 08.06.09 Björn Brembs, Freie Univ...
Basic research: how do different brains solve the problem of adaptive behavioral choice? 08.06.09 Björn Brembs, Freie Univ...
<ul><li>The neurobiology of spontaneous behavior (PhD student) </li></ul><ul><li>Localizing an operant memory (Postdoc: Dr...
08.06.09 Björn Brembs, Freie Universität Berlin
08.06.09 Björn Brembs, Freie Universität Berlin
08.06.09 Björn Brembs, Freie Universität Berlin
<ul><li>PhD student </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
08.06.09 Björn Brembs, Freie Universität Berlin Maye et al. (2007) PLoS One Nonlinear (choice) Linear/stochastic (noise) M...
<ul><li>PhD student </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
<ul><li>Dr. Julien Colomb </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
08.06.09 Björn Brembs, Freie Universität Berlin operant classical
08.06.09 Björn Brembs, Freie Universität Berlin Brembs & Plendl (2008) Current Biology rut -AC dependent Synaptic Plastici...
<ul><li>Dr. Julien Colomb </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
<ul><li>Dr. Björn Brembs </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
<ul><li>Aplysia californica </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin F. Lorenzetti, D. Baxter, J. Byrne (...
08.06.09 Björn Brembs, Freie Universität Berlin Collaboration with Dr. Zars (Missouri): P-Element in the last Exon of FoxP...
08.06.09 Björn Brembs, Freie Universität Berlin Synaptic plasticity: Operant  learning ( Aplysia : neuronal plasticity?): ...
08.06.09 Björn Brembs, Freie Universität Berlin Brembs, Curr. Biol. In revis. <ul><li>Reciprocal, hierarchical interaction...
08.06.09 Björn Brembs, Freie Universität Berlin Brembs, Curr. Biol. In revis. <ul><li>Reciprocal, hierarchical interaction...
Upcoming SlideShare
Loading in …5
×

The neurobiology of spontaneous actions and operant learning in Drosophila

1,761 views

Published on

Learning about the consequences of our actions (operant learning) is one of the major ways in which we learn to understand the world we live in. Despite our recent advances in the neurobiology of learning and memory, this “learning-by-doing” has largely withstood neurobiological scrutiny. This proposal aims to elucidate the molecular and neurobiological mechanisms of spontaneous behavioral choice and how decision-making is modulated by the consequences of such actions. This research will be done in a genetically amenable model system, the fruit fly Drosophila. We will use state-of-the-art genetic and behavioral techniques to identify the circuitry and molecular processes involved in generating spontaneous turning behavior and its modulation by operant learning. Operant learning is only one system among many which govern the organization of behavior. The long-term prospect of this research beyond this application is to understand how multiple memory systems interact to accomplish adaptive behavioral choice and decision-making.

Published in: Health & Medicine, Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,761
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

The neurobiology of spontaneous actions and operant learning in Drosophila

  1. 1. Björn Brembs Freie Universität Berlin
  2. 2. 08.06.09 Björn Brembs, Freie Universität Berlin <ul><li>Prerequisites </li></ul><ul><ul><li>Spontaneous behavior </li></ul></ul><ul><li>Functions </li></ul><ul><ul><li>Learning about the environment (lever) </li></ul></ul><ul><ul><li>Learning about the consequences of one‘s own behavior (pressing) </li></ul></ul><ul><ul><li>Distinguishing between exafferent and reafferent stimuli (self vs. non-self) </li></ul></ul><ul><ul><li>Control over environment </li></ul></ul><ul><li>Consequences </li></ul><ul><ul><li>Memories </li></ul></ul><ul><ul><li>Agency </li></ul></ul><ul><ul><li>Habits </li></ul></ul>
  3. 3. 08.06.09 Björn Brembs, Freie Universität Berlin <ul><li>Basic research: Adaptive behavioral choice requires knowledge of the consequences of one‘s own behavior </li></ul><ul><li>Human disorders associated with various operant processes: </li></ul><ul><ul><li>Habit formation a model for addiction, OCD </li></ul></ul><ul><ul><li>High comorbidity among disorders, e.g., Anorexia/OCD, self-harming/dissociative disorders </li></ul></ul>Disorder Operant aspect Autism spectrum, depression, OCD, ADHD, Tourette, Parkinson Spontaneous behavioral variability, action initiation Depression („learned helplessness“), Anorexia nervosa Control over environment Self-harming patients, dissociative disorders Sense of self/agency
  4. 4. Basic research: how do different brains solve the problem of adaptive behavioral choice? 08.06.09 Björn Brembs, Freie Universität Berlin
  5. 5. Basic research: how do different brains solve the problem of adaptive behavioral choice? 08.06.09 Björn Brembs, Freie Universität Berlin Classical/Pavlovian conditioning (fact-learning): Evolutionary conservation Technical advantages
  6. 6. Basic research: how do different brains solve the problem of adaptive behavioral choice? 08.06.09 Björn Brembs, Freie Universität Berlin Classical/Pavlovian conditioning (fact-learning): Operant learning (skill-learning): Evolutionary conservation Technical advantages ? ? ?
  7. 7. <ul><li>The neurobiology of spontaneous behavior (PhD student) </li></ul><ul><li>Localizing an operant memory (Postdoc: Dr. Julien Colomb) </li></ul><ul><li>Identifying further molecular components of the operant learning system (Dr. Björn Brembs) </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
  8. 8. 08.06.09 Björn Brembs, Freie Universität Berlin
  9. 9. 08.06.09 Björn Brembs, Freie Universität Berlin
  10. 10. 08.06.09 Björn Brembs, Freie Universität Berlin
  11. 11. <ul><li>PhD student </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
  12. 12. 08.06.09 Björn Brembs, Freie Universität Berlin Maye et al. (2007) PLoS One Nonlinear (choice) Linear/stochastic (noise) Mushroom bodies Ellipsoid body Fan-shaped body nonlinearity correlation
  13. 13. <ul><li>PhD student </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
  14. 14. <ul><li>Dr. Julien Colomb </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
  15. 15. 08.06.09 Björn Brembs, Freie Universität Berlin operant classical
  16. 16. 08.06.09 Björn Brembs, Freie Universität Berlin Brembs & Plendl (2008) Current Biology rut -AC dependent Synaptic Plasticity Protein Kinase C Required Required Not required Not required classical operant
  17. 17. <ul><li>Dr. Julien Colomb </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
  18. 18. <ul><li>Dr. Björn Brembs </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin
  19. 19. <ul><li>Aplysia californica </li></ul>08.06.09 Björn Brembs, Freie Universität Berlin F. Lorenzetti, D. Baxter, J. Byrne (2008): Neuron 59, 815-828
  20. 20. 08.06.09 Björn Brembs, Freie Universität Berlin Collaboration with Dr. Zars (Missouri): P-Element in the last Exon of FoxP FoxP Required Not required PKC Required Not required
  21. 21. 08.06.09 Björn Brembs, Freie Universität Berlin Synaptic plasticity: Operant learning ( Aplysia : neuronal plasticity?): ? ? ?
  22. 22. 08.06.09 Björn Brembs, Freie Universität Berlin Brembs, Curr. Biol. In revis. <ul><li>Reciprocal, hierarchical interactions: </li></ul><ul><li>Facilitate classical learning (learning-by-doing) </li></ul><ul><li>Enable generalization of classical memories </li></ul><ul><li>Regulate habit formation </li></ul>
  23. 23. 08.06.09 Björn Brembs, Freie Universität Berlin Brembs, Curr. Biol. In revis. <ul><li>Reciprocal, hierarchical interactions: </li></ul><ul><li>Facilitate classical learning (learning-by-doing) </li></ul><ul><li>Enable generalization of classical memories </li></ul><ul><li>Regulate habit formation </li></ul><ul><li>Operant learning (habit formation): </li></ul><ul><li>Habit-formation is a model for addiction, OCD, stereotypies </li></ul><ul><li>Operant Behavior (detection of control): </li></ul><ul><li>Sense of control over environment affected in depression („learned helplessness“), anorexia nervosa </li></ul><ul><li>Sense of self/agency altered in self-harming patients, dissociative disorders </li></ul>

×