Your SlideShare is downloading. ×
Final Graduation
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Final Graduation

872
views

Published on

This is my presentation for my final graduation, performed at the faculty of aerospace engineering at the Delft University of Technology. I will put the movies incorporated in the presentation on …

This is my presentation for my final graduation, performed at the faculty of aerospace engineering at the Delft University of Technology. I will put the movies incorporated in the presentation on YouTube

Published in: Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
872
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • Welkom iedereen, in het bijzonder de commissie
  • Doelen van het onderzoekZero gravity ontstaatwanneerer met dezelfdeversnellingnaar de aardewordtbewogenalsdat de aardeaan je trekt.Aarde is 1 g of 9.81 m/s^2, Maan 17%, Mars 38%
  • Zero gravity uitleggen, liftGravity fieldsLand erosion on MarsDeployable solar panels
  • Voordeelcessna: nu ook partial-g
  • Leg groothedenuitObjectives per phaseTransitiecreteria (uiteerderonderzoek)Waaromgeenautopilootmaar flight director (grotekrachten)
  • Twee relevantereferentie frames. Tijdensdit experiment wordt het body reference frame alsreferentieaangenomen.Anders versnellinglangs X_B nietnul, en opstelling in eengimbal system (of free float). Aanname: experiment wordtnietbeinvloed door de rotatie van het vliegtuig.Leg de specifiekekrachtuit in het centre of gravityManeuvre is symmetrical
  • Twee bronnen van specifiekekracht: zwaartekracht en beweging.Complete afleiding in appendix van mijn paper.Flight path can be obtained by integrating the last equation twiceEindeintroductie, hierna: flight director
  • Introduceereen flight directorLeg uitwaaromeen autopilot nietwerkt
  • Het schematischoverzicht van de pilot en de systemenstaathier. Als we inzoomen op de flight director zien we de volgende flight director control law is gebruikt.Q_refwordtbepaald door middel van formule die de rotatieberekend op basis van het perfectetraject op basis van flight path angle, gamma, the pitch angle, theta, the airspeed, the lambda_g, de zwaartekracht, g, the air density, rho, het oppervlakte van de vleugels en de alpha – lift curve, CL-alpha. Voor de afleidingverwijsiknaarmijn paper.Nz is geintegreerdomzoeen static state error te voorkomen en het gewenste 1/s gedragcreerenrond de cross over frequentie. Gain scheduling is used to compensate for varying elevator stick input effectiveness, due to changing airspeed.De gains zijnafhankelijk van de partial gravity condition.
  • Duidelijke -1/s gedragbij de dynamics van de controlled ellementrond de cross over frequentie.
  • Assume contant pilot behavior throughout the maneuver, but changes between maneuvers.!!! Simulation results
  • 5 primary flight displays of Citation, waaromtoevoegingen op basis intstrumentenAdded instruments: n_z meter, error bar, flight director and sequencer
  • DASMAT: Delft University Aircraft Simulation Model and Analysis Tool: 6 dof non linearNo motion, omdat zero g nietbereiken is. Simona, vanwege de stuurkolomNormaal 2 piloten, vandaar auto throttle
  • Aantalcondities, flight block
  • Als flight experience nietuitmaaktkunnendezeresultatenookmeegenomenworden
  • Doorgeen q-feedback was 0.17g makkelijk te vliegen
  • Results are all significant according to ANOVA’s
  • Flight director in combination with sequencer improves duration and accuracy
  • Test flights to validate the simulator results
  • Results are not significant
  • Welkom iedereen, in het bijzonder de commissie
  • Transcript

    • 1. Flight director design for zero and partial gravity flight Simulation analysis and experimental results of the partial gravity maneuver prof. dr. ir. J.A. Mulder prof. dr. ir. M. Mulder Bram Masselink dr. ir. M.M. van Paassen Department of control and simulation ir. A.C. in „t Veld Faculty of aerospace engineering ir. M.H. Smaili Delft University of Technology 2-6-2009 Challenge the future
    • 2. Flight director design for zero and partial gravity flight • A flight director is… • … an aid for a pilot ... • … on a display … • … to fly a certain maneuver. • A zero or partial gravity maneuver is … • … a flight maneuver … • … in which during a short period … • … a sense of weightlessness or microgravity is experienced. 2 | 34 35
    • 3. Reasons to perform partial gravity flights • Fundamental research • Practical research • Test space equipment before launching it “To understand in full the mechanisms governing our life and physics, we need to study what life would be without it (gravity, edit.)” 1 1 ESA, “ESA Research,” 2008, http://www.esa.int/esaHS/research.html 3 | 34 35
    • 4. FLIGHT DIRECTOR DESIGN FOR ZERO AND PARTIAL GRAVITY FLIGHT 4 | 34 35
    • 5. Contents • Introduction • The parabolic flight maneuver • Reference frames and specific forces • Design of the flight director control law and display • Experiment 1: flight simulator • Method • Results • Experiment 2: test flight • Conclusions and recommendations introduction – FD design – simulator – test flight – conclusions 5 | 34 35
    • 6. Test facilities • NASA Zero Gravity Research Facility, Cleveland, Ohio • 145m free fall tower (5.18s zero gravity) • International Space Station (ISS) • „unlimited‟ zero gravity • CNES Airbus A-300 ZERO-G (15 – 20s zero gravity) • Cessna Citation II Laboratory Aircraft (TUDelft) (up to 10s 0g) introduction – FD design – simulator – test flight – conclusions 6 | 34 35
    • 7. Parabolic flight maneuver introduction – FD design – simulator – test flight – conclusions 7 | 34 35
    • 8. Earth vs. body fixed reference frame Required specific forces in the body fixed reference frame: λg = 0.00g (Space) λg = 0.17g (Moon) λg = 0.38g (Mars) introduction – FD design – simulator – test flight – conclusions 8 | 34 35
    • 9. Specific forces Specific forces in the Earth fixed reference frame due to the movement of the center of gravity of the aircraft: Assume: ΩE = 0 and symmetrical along XB Rewriting to body fixed reference frame: Required accelerations (including gravity): introduction – FD design – simulator – test flight – conclusions 9 | 34 35
    • 10. Flight director objectives Example of flight director • Highly accurate partial gravity flight phase • Partial gravity flight phase as long as possible • Remaining within the safety limits of the aircraft • Introducing enough stability margins • Limited influence of varying pilot control behavior Boeing 737 Primary Flight Display 5 introduction – FD design – simulator – test flight – conclusions 10 | 34 35
    • 11. Design process of the flight director control law 1. Classical control theory using McRuer‟s cross over model 2. Adjusting and optimizing the flight director control law, because: • Aircraft dynamics change during the maneuver (VTAS ≠ const.) • Partial gravity flight phase is short • Also time domain objectives • Measurement noise introduction – FD design – simulator – test flight – conclusions 11 | 34 35
    • 12. Flight director control law λg Knz Kq 0.00g -0.15 -0.35 0.17g -0.05 -0.25 0.38g -0.15 -0.40 introduction – FD design – simulator – test flight – conclusions 12 | 34 35
    • 13. Dynamics of the controlled element • Integrator dynamics near the cross over frequency • Higher order dynamics for lower and higher frequencies introduction – FD design – simulator – test flight – conclusions 13 | 34 35
    • 14. Influence of varying pilot control behavior • Increased stability for higher pilot gain, except for lp1 • Constant partial gravity time Simulation results: • 15.3 sec (λg = 0.00g) • 19.1 sec (λg = 0.17g) • 25.0 sec (λg = 0.38g) introduction – FD design – simulator – test flight – conclusions 14 | 34 35
    • 15. Display design 1. Air speed indicator 2. Compass 3. Vert. speed indicator 4. Altitude 5. Artificial horizon 6. Spec. force indicator 7. Spec. force error indicator 8. Flight direcotr bar 9. Sequencer lights introduction – FD design – simulator – test flight – conclusions 15 | 34 35
    • 16. Experiment 1: flight simulator • Method • Apparatus / aircraft model and flight conditions / subjects • Independent variables and dependent measures • Hypotheses • Results • Duration of the partial gravity flight phase • Accuracy of the partial gravity flight phase • Workload / safety / flight experience of subjects • Wing leveler introduction – FD design – simulator – test flight – conclusions 16 | 34 35
    • 17. Simona experiment • Apparatus • Simona Research Simulator • No motion • Static control loading • Aircraft model • Cessna Citation II • Incl. auto-throttle • Flight condition • 3000m altitude • 125m/s VTAS • Subjects • 4 Citation pilots • 5 students introduction – FD design – simulator – test flight – conclusions 17 | 34 35
    • 18. Independent variables • Partial gravity settings • λg = 0.00g (space) • λg = 0.17g (Moon) • λg = 0.38g (Mars) • Display modes • Baseline , (6) & (7) • Display 1 , (6), (7) & (8) • Display 2, (6), (7), (8) & (9) • Wing leveler • on and off Baseline display Display 1 2 introduction – FD design – simulator – test flight – conclusions 18 | 34 35
    • 19. Dependent measures • Duration • tλg (±0.050g) • tλg (±0.075g) • Accuracy • RMS ελg (±0.050g). • RMS ελg (±0.075g) • Safety • VTAS, max • nz, max • Workload • NASA TLX Workload rating introduction – FD design – simulator – test flight – conclusions 19 | 34 35
    • 20. Hypotheses 1. The flight director will improve the maneuver accuracy and duration 2. The sequencer will improve duration and reduce workload 3. The wing leveler will reduce pilot workload and increase duration and accuracy 4. The results are not influenced by the flight experience of the subjects introduction – FD design – simulator – test flight – conclusions 20 | 34 35
    • 21. Results of the Simona experiment - accuracy • Accuracy is significantly better for λg = 0.17g • The flight director in combination with the sequencer improves the accuracy significantly introduction – FD design – simulator – test flight – conclusions 21 | 34 35
    • 22. Results of the Simona experiment - duration • Shorter duration for λg = 0.38g than expected • Significant improvement for the flight director and sequencer introduction – FD design – simulator – test flight – conclusions 22 | 34 35
    • 23. Workload / safety / flight experience of subjects • Workload • not influenced by the display • lower workload for λg = 0.17g • Safety 1. Display 2 2. Baseline 3. Display 1 • Flight experience • No influence on duration • No influence on accuracy • No influence on safety introduction – FD design – simulator – test flight – conclusions 23 | 34 35
    • 24. Results of the wing leveler experiment • Improves duration • Improves accuracy • Reduces workload introduction – FD design – simulator – test flight – conclusions 24 | 34 35
    • 25. Simulator experiment - summary Hypotheses:  The flight director will improve the maneuver accuracy and duration - The sequencer will improve duration and reduce workload  The wing leveler will reduce pilot workload and increase duration and accuracy  The results are not influenced by the flight experience of the subjects introduction – FD design – simulator – test flight – conclusions 25 | 34 35
    • 26. Experiment 2: test flight method • Cessna Citation II • 30 parabolic flight maneuvers • Four different pilots • Display mounted in front of the pilots during flight • Three partial gravity conditions • Two displays (Baseline & Display 2) introduction – FD design – simulator – test flight – conclusions 26 | 34 35
    • 27. Test flight introduction – FD design – simulator – test flight – conclusions 27 | 34 35
    • 28. introduction – FD design – simulator – test flight – conclusions 28 | 34 35
    • 29. introduction – FD design – simulator – test flight – conclusions 29 | 34 35
    • 30. Test flight results • Comparison to historical values: • Improved accuracy • Improved duration • Due to limited number of flight no significant differences in the display modes introduction – FD design – simulator – test flight – conclusions 30 | 34 35
    • 31. Comparison between simulator and real flight • Zero gravity flight: better performance in real flight • λg = 0.17g better in simulator introduction – FD design – simulator – test flight – conclusions 31 | 34 35
    • 32. Finishing the partial gravity flight phase • The partial gravity flight phase is abandoned earlier in the real flight than in the simulator • The partial gravity flight phase is abandoned earlier if λg = 0.38g (due to lack of dynamic pressure feedback to the control loading) introduction – FD design – simulator – test flight – conclusions 32 | 34 35
    • 33. Conclusions • The display including the flight director and sequencer improves the partial gravity maneuver in terms of accuracy and duration • The flight director does not deteriorate safety and workload • Performance for zero gravity is better in real flight than in the simulator • The partial gravity maneuver is abandoned earlier in the Citation than in the Simona introduction – FD design – simulator – test flight – conclusions 33 | 34 35
    • 34. Recommendations • Use a different workload rating method • Display design improvements: • Include audio signals • Combine the two specific force indicators • Visualize the safety margins • Investigate the transition criteria given by Heuvel et al. • Implement q-feedback on the control loading in Simona • Investigate the early abandonment of the maneuver in the aircraft, and try to avoid it introduction – FD design – simulator – test flight – conclusions 34 | 34 35
    • 35. 35 | 34 35
    • 36. Flight director design for zero and partial gravity flight Simulation analysis and experimental results of the partial gravity maneuver 2-6-2009 Delft University of Technology Challenge the future
    • 37. Borrel Vrijdag 13 februari, 21:00 Café „Het Pakhuis‟ Phoenixstraat 4C 2611 AL Delft 37 | 34 35
    • 38. APPENDICES 38 | 34 35
    • 39. Aircraft transfer functions 39 | 34 35
    • 40. Off line simulation results 40 | 34 35
    • 41. NASA TLX Workload Rating 41 | 34 35
    • 42. Simona ANOVA’s 42 | 34 35
    • 43. Chance of correct flight 43 | 34 35
    • 44. Simona experiment - workload 44 | 34 35
    • 45. Simona experiment - safety 45 | 34 35
    • 46. Display recommendation 46 | 34 35
    • 47. Off-line simulation results 47 | 34 35

    ×