Your SlideShare is downloading. ×
0
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Powerpoint for bio lab
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Powerpoint for bio lab

265

Published on

Published in: Health & Medicine, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
265
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Factors Effecting Lung Capacity By: Bonnie Wade, Austin Worley, and Zack Elkins
  • 2. The Lungs• Lungs are present in all human bodies so that we can breathe.• Lungs make up a large part of our respiratory system.• They are located in our chest within the rib cage and connect to the trachea.• The diaphragm is located directly behind the lungs. The diaphragm is a muscle that allows us to breathe in and out.• We breathe in oxygen and release carbon dioxide through the lungs. -This exchange occurs at the alveolar membrane, between the alveoli and capillaries in the lungs. The alveoli are tiny sacs at the furthest ends of the branching airways of the lungs. -As the lungs exhale, carbon dioxide exits the alveoli and leaves oxygen- enriched blood that travels to the heart, which pumps through the body• All cells need oxygen to function properly, and our lungs give the cells the oxygen they need in order to do so.
  • 3. The Lungs
  • 4. Lung Capacity•Lung capacity is the greatest amount of oxygen a persons lungscan hold within them.•The average total lung capacity of an adult human male isabout6 liters of air, but only a small amount of this capacity isused during normal breathing.•An average human breathes some 12-20 times per minute.•The amount of air that you move in and out of your lungs whilebreathing normally is called TIDAL VOLUME. This amount of airprovides enough oxygen for a person who is resting.•It is possible to inhale and exhale more forcefully - themaximum amount of air moved in and out of the lungs is calledthe VITAL CAPACITY.
  • 5. What Led us to our Hypothesis?• You know from experience that your lungs can respond to the bodys changing needs for oxygen. -When you exercise vigorously, you breathe deeper and faster to keep yourself going• First, we formulated a hypothesis that athletes will have a greater lung capacity than non-athletes. BECAUSE: -Pulmonary ventilation is linked with the intake of oxygen at different levels of exercise. -Lung function limitations have a relationship with lifestyles, people who exercise vs. people who do not. -Due to regular exercise, athletes tend to have an increase in pulmonary capacity when compared to non-exercising individuals, especially when the exercise is strenuous.• WHICH LEADS US TO OUR FIRST HYPOTHESIS: Athletes would have a higher lung capacity than non-athletes.• After this, we looked at the collected data and noticed that we had many different heights and weights among the people that we tested.• -WHICH LEADS US TO OUR SECOND HYPOTHESIS: The greater an individual’s weight and height, the higher the individuals lung capacity.
  • 6. •First we obtained a spirometer and filled the base up with water to the fillline.•Then, we placed a paperclip on the chain where the numbers above read0.00.•After that, we put a cardboard cover over the end of the spirometer’sextended tube for each separate tested individual.•We gathered people from around campus, both athletic and non-athletic, tovolunteer to be tested in the experiment.•Before we performed the experiment, we recorded if the person wasathletic or non-athletic, their height, and their weight.•We measured the lung capacity by a person taking a very deep breath andblowing the collected air into the end of the tube extending from thespirometer.•Directly after, we recorded the measurement and repeated this two moretimes and recorded the highest number received out of the three tries foreach individual.•Then, we calculated the average lung capacity of the athletes separate fromthe non-athletes and compared them.
  • 7. •Our first hypothesis was that athletes will have a higher lung capacity than non-athletes. Our first hypothesis was false. After further review, we tested the hypothesisthat the greater an individual’s height and weight, then the higher the lung capacity.• In this experiment we have concluded that athleticism does not matter as much asthe factors of height and weight in measuring Lung capacity.•The bigger the person is, the larger the lung capacity will be. - The data that we took from individuals gave us a wide range of sizes to consider, and it matched our second hypothesis of lung capacity being dependant on height and weight.•This hypothesis seems logical enough. - If oxygen has to flow though a human’s entire body for our cells to function efficiently, then the larger individual would have a lot more space and therefore needing more oxygen than a smaller person does. -So, lung capacity must be greater in a larger individual than a smaller individual to hold and transport more oxygen than is needed in a smaller one.•Although, there are a few factors that could be looked at as well. -Smoking could be a negative factor that affects lung capacity. - Also, maybe the gender of someone could be an aspect to look at as well.In addition, people with asthma may have a weaker lung capacity than someone without asthma.

×