Your SlideShare is downloading. ×
0
Washington State Ocean Energy                        Conference    Deep Water Wind and an Ocean Energy Economy    Charlie ...
Outline Forces changing the national energy picture The case for ocean-based renewable energy Resource potential Value cre...
Energy, Population, and Economics                      15,000                                                     4,200   ...
Nation’s Electricity Runs on Coal                        Coal                                      Natural Gas            ...
Global Coal Market Drives Electricity Price                                                                               ...
Goals for Renewable Electricity Generation           DOE – 30% by 2030           Navy – 50% of shore-based energy by 2020 ...
Ocean Renewable Energy Hydrokinetic: US DOE’s definition focuses on energy from unimpounded moving water — tides, currents...
Why Ocean Renewable Energy? Large renewable energy source, with best attributes relative to demand    Coastal resources fa...
Resource Base – Wave Energy           Greatest potential at higher           latitudes                  Deepwater (>100m) ...
Resource Base – Tidal Power      Greatest potential above 45° North, Sea of Cortez, and      Bay of Fundy to Nova Scotia  ...
Resource Base – Offshore Wind         Over 4 TW of extractable power –         4 times US generating capacity             ...
Resource Base – Ocean Thermal      Limited to waters with >20°C temperature differential      with depth      Estimated 5 ...
PNW Ocean Energy – the Numbers            Offshore wind, wave, and tidal power resource potential exceeds by            ma...
Challenges for Offshore Energy Farms   Siting                                                                             ...
Components of Building Ocean Energy     Manufacture                                               Siting     •   Turbines ...
Manufacturing and Maritime Industries      RenewableUK assessed manufacturing      and marine needs to support a ―Healthy ...
Economic Impacts          Capital investment of $3.7M per MW✝          Rate of return on investment              4.4 direc...
Summary Energy demand is increasing as a function of economic growth Energy price is increasing as a function of global de...
Thank you for your attention!         Charlie Brandt         Pacific Northwest National Laboratory         charles.brandt@...
Upcoming SlideShare
Loading in...5
×

Ctws ocean energy brandt

190

Published on

Published in: Technology, Economy & Finance
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
190
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Point of the picture—the ocean is a powerful place (wind, waves, currents); technology and demand are aligning to make harnessing this power for our utility a reality. The ocean is also a beautiful, ecologically sensitive, and heavily used place (beauty of the seascape, marine transportation, coastal ecosystems); realizing the ocean’s potential to provide renewable energy while sustaining its many other valued services is a fascinating and important challenge…or something like that.
  • First lesson: As our population and economy grows, growth in electrical energy demand will continue. We will be running hard just to stay in place.In 2009, GDP dropped 2%; energy dropped 4%.
  • Although WA generates 70% of its electricity from conventional hydro, most of the nation runs on fossil fuels, dominated by coalTW is 10^15 watts
  • Second lesson: International fossil energy market is driving up price of US electricity – the cost penalty of alternatives is becoming less and less
  • Most states have said they want growth to come from renewables, and renewables to offset coalSecretary of EnergySecretary of Navy – Naval Energy Forum, winter 2009
  • Other forms include generating power from salinity gradients.Won’t talk much about algae today. Resource is very poorly characterized – primary focus of investment is using marine microalgae in land-based ponds for fuels
  • M2 tides are idealized estimates of moon-driven. Initial estimates at seven sites in Puget Sound indicate that there are more than 100 MW of electricity available from tidal currents—Admiralty Inlet shows the greatest promise, with estimates of more than 75 MW available. 100 MW is enough to power about 70,000 homes. These are only initial estimates—the actual potential for tidal power is likely much greater in Puget Sound, but we need more research to determine this, and then further research to determine how much power could be feasibly removed without disrupting the system.
  • US nameplate capacity in 2003 (latest data) was 1.03 TW (EIA)
  • Point of the picture—Not really sure…but what a picture it is!
  • Transcript of "Ctws ocean energy brandt"

    1. 1. Washington State Ocean Energy Conference Deep Water Wind and an Ocean Energy Economy Charlie Brandt, Ph.D. Director Coastal Sciences Division & Marine Sciences Laboratory Pacific Northwest National Laboratory Bremerton, WA November 8, 20111
    2. 2. Outline Forces changing the national energy picture The case for ocean-based renewable energy Resource potential Value creation
    3. 3. Energy, Population, and Economics 15,000 4,200 4,150 14,000 Population and 4,100 economy drive energy demand Energy Consumption (MMWh) 4,050 13,000 Both drivers will GDP (B$) 4,000 continue to increase 12,000 3,950 over the coming 3,900 decades, though net 11,000 3,850 consumption has not kept pace over past 10,000 3,800 3 years due to 3,750 recession 9,000 3,700 280 290 300 310 320 US Population 2000–2009 (Millions)http://www.bea.gov/http://www.census.gov/popest/states/NST-ann-est.html 3http://www.eia.doe.gov/electricity/epm/table1_1.html
    4. 4. Nation’s Electricity Runs on Coal Coal Natural Gas Nuclear Hydroelectric Conventional Other Renewables Petroleum Nation generated 4,120 Other Gases Hydrogen, batteries TWh in 2010, a 4% 2,500 increase over 2009 TWh 45% of 2010 2,000 consumption was supplied by coal 1,500 Conventional hydro remains the largest ―renewable‖ source 1,000 (6%), although only 72% of its high in 500 1997 -4Data from http://www.eia.doe.gov/electricity/epm/table1_1.html
    5. 5. Global Coal Market Drives Electricity Price 12 47 US coal price steadily increasing since 2004 due to 11.5 rise in demand by China and 42 India 11 Average increase prior to Residential (¢/kWh) Coal Fuel ($/ton) 10.5 2003 – 0%/yr 37 Average increase after 2003 10 – 8%/yr 32 9.5 Average retail price of electricity shows same trend 9 (R2 = 0.98 for 1996-2010) 27 8.5 8 22 At end of 2011, China and India will be importing 337 Mmt, 78% increase over 2010 imports. At end of last year, China was paying $129/ton offloaded – Australia and Europe export price was $112/ton5Data from http://www.eia.doe.gov/cneaf/electricity/epm/table5_3.html and /table4_1.html, Bloomberg Businessweek Dec 21, 2010
    6. 6. Goals for Renewable Electricity Generation DOE – 30% by 2030 Navy – 50% of shore-based energy by 2020 State Goal Date State Goal Date AZ 15% 2025 CT 27% 2020 CA 33% 2020 IL 25% 2025 CO 20% 2020 MA 15% 2020 KS 20% 2020 MD 20% 2022 MT 15% 2015 ME 40% 2017 OR 25% 2025 NH 25% 2025 NM 20% 2020 NY 25% 2013 NV 25% 2025 RI 16% 2019 UT 20% 2025 VA 15% 2025 WA 15% 2020 VT 25% 2025Data from http://www.pewclimate.org/what_s_being_done/in_the_states/rps.cfm
    7. 7. Ocean Renewable Energy Hydrokinetic: US DOE’s definition focuses on energy from unimpounded moving water — tides, currents, rivers, waves Offshore wind: Land-based wind on steroids Ocean Thermal Energy Conversion (OTEC): exploiting thermal gradients with depth to drive heat engine or ―steam‖ Algal biofuels: Largely marine micro and macroalgae used as biomass feedstock or ―biodiesel‖
    8. 8. Why Ocean Renewable Energy? Large renewable energy source, with best attributes relative to demand Coastal resources far exceed total US energy demand Higher/steadier wind speeds Highly predictable waves and tides 40 Millions Coastal High productivity 35 Inland Resource is near load centers 30 52% of US population lives in coastal counties 25 Population 28 coastal states consume 78% of nation’s electricity 20 Simplifies transmission requirements 15 Reduced environmental effects 10 Low to no noise and visual impacts (human pops) Few bats and birds 5 Reduced land/sea use conflicts 0 Significant economies of scale 5 15 25 Retail electricity price (¢/kWh) 35 Larger devices Larger arrays Best or only opportunity for utility-scale renewables in parts of the country
    9. 9. Resource Base – Wave Energy Greatest potential at higher latitudes Deepwater (>100m) resource 1- 10 TW Well conditioned Predictable Consistent Effective for remote coastal communities WA / OR / northern CA Average annual wave power 40-60 kW/m shoreline Potential to provide over 20 GW of electrical energy, on average (over 40 GW in winter – Dec-Feb) Compare to total electricity generation in 2008 for WA/OR/CA of 43 GWWave energy data from Fugro OCEANOR, April 2010 and World Energy Council 2007Electricity data from EIA
    10. 10. Resource Base – Tidal Power Greatest potential above 45° North, Sea of Cortez, and Bay of Fundy to Nova Scotia No international assessment as yet – but estimates range from 450 GW to 3 TW cm http://www.aviso.oceanobs.com/fileadmin/images/data/Products/a uxiliaires/m2_amp_fes99.jpg10
    11. 11. Resource Base – Offshore Wind Over 4 TW of extractable power – 4 times US generating capacity Highest wind speeds and fewer competing uses further from shore Best winds over water depths > 30 m (~100 ft) – Floating Platforms GW 734 GW 0-30 m 30-60 m >60 m Hawaii930 GW Gulf of Mexico South Atlantic Mid Atlantic 1256 GW New England Great Lakes Pacific Northwest California 0 200 400 600 800 637 GW 594 GW GW NREL (2010) Assessment of Offshore Wind Energy Resources for the United States
    12. 12. Resource Base – Ocean Thermal Limited to waters with >20°C temperature differential with depth Estimated 5 TW global resource potential without disrupting vertical structure – Nihous (2007) J Ener. Res. Technol. Mean ΔT (surface – 1000 m) 18- 20°C 20- 22°C 22- 24°C >24°C12
    13. 13. PNW Ocean Energy – the Numbers Offshore wind, wave, and tidal power resource potential exceeds by many times the total energy use of Washington and Oregon 5 GW tidal 15 GW wave 415 GW offshore wind 19 GW total generation from all sources in 2008 Pacific NW Ocean Energy as % of 2008 Generation Tidal 26% Wave 77% Offshore… 2148% 0% 500% 1000% 1500% 2000% 2500%Data from EIA, EPRI, NREL, PNNL
    14. 14. Challenges for Offshore Energy Farms Siting Technical design Towers and foundations Site assessments (physical and biological) Rotors/Turbines/Oscillators Accessibility and reliability of Drivetrains instrumentation Control systems Increased data quality Pre- and post-installation Improved predictive site Vessels for installation and measurement maintenance Design environments Current wind fleet is European Water depth Active condition monitoring Currents Preventive maintenance Seabed migration Technology standards Wind/tidal conditions Ensure reliability Wave conditions Enable permitting and investment Severe conditions Biofouling Transmission and grid interconnection Corrosion HVDC Icing Balancing Seabed compositionAdapted from US Offshore Wind Collaborative (2009) US Offshore Wind Energy: A Path Forward
    15. 15. Components of Building Ocean Energy Manufacture Siting • Turbines • Engineering – • Rotors meteorology, wave, current, seab • Towers ed geology, bathymetry • Foundations/moorings • Environmental – • Cable biota, navigation, fisheries, seab • Vessels – ed use construction, cable- • Logistics – laying, O&M ports/vessels, substations, trans mission Permitting Marine Operations • Environmental • Turbine & rotor installation • Stakeholders • Tower Installation • Compliance monitoring • Foundation/mooring • Compliance control installation • Offshore substation Balance of Plant installation • Monitoring & control systems • Collection/transmission • Substation – offshore and onshore • system installation Utilizing coastal assets in Transmission • O&M maritime, manufacturing, engi neering, and environmental fields15
    16. 16. Manufacturing and Maritime Industries RenewableUK assessed manufacturing and marine needs to support a ―Healthy Industry‖ development scenario Delivering 23.2 GW offshore wind by 2020 Adding 3.2 GW/yr thereafter Using 5% of PNW ocean resource, would require 145 installation vessels 133 O&M vessels 5,200 km HVDC cable 1.6M km HVAC cable 4,700 km array cable 9,000 turbines, towers, and foundations16
    17. 17. Economic Impacts Capital investment of $3.7M per MW✝ Rate of return on investment 4.4 direct jobs per MW* $893k/yr economic benefit per MW* Impact of DOE Offshore Wind Innovation and Demonstration initiative (54 GW by 2030) 238,000 direct jobs $1.56B/yr economic benefit Impact of PNW ocean energy potential✠ 97,000 direct jobs $196M/yr economic benefit ✝ US offshore wind calculated from LBNL 2010 2009 Wind Technologies Market Report and EWEA 2009 The Economics of Wind Energy * Calculated from IEA Wind Energy 2010 2009 Annual Report and EWEA 2009 The Economics of Wind Energy17 ✠ Assuming 5% of 440 GW wind/wave/tidal resource is developed
    18. 18. Summary Energy demand is increasing as a function of economic growth Energy price is increasing as a function of global demand for fossil resources Greatest demand and highest price is within coastal states Washington has abundant tidal, wave, and offshore wind resources Ocean energy is a nascent industry in the US; cooperation to resolve challenges is important to sustainability Significant impact of successful ocean energy development on jobs and economy of Washington’s coastal regions
    19. 19. Thank you for your attention! Charlie Brandt Pacific Northwest National Laboratory charles.brandt@pnl.gov 360.681.4594 I would like to acknowledge generous support by the US Department of Energy’s Wind & Water Power Program OfficeSlide19
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×