Your SlideShare is downloading. ×
MENU

 RECURSIÓN E
 ITERATIVIDAD


 NUMEROS DE
  CATALAN


 ALGORITMOS



 EJECUCIÓN DE
LOS ALGORITMOS


CONCLUSIONES Y
RE...
La recursión o recursividad es un concepto amplio, con muchas variantes.
Aparece en numerosas actividades de la vida diari...
Subprograma P
                                  Directa: el programa o subprograma se llama
     -------------------------...
Estos números se utilizan en una gran variedad de problemas de
combinatoria. Tienen varias aplicaciones; por ejemplo, dete...
El problema de distancia de Los numero s de catalán se puede
     realizar con recursión al igual que iterativamente.


1....
8. Lo mismo pasa con la formula fac=n+1
Se hace con otro for :
fac=n+1;
      for(c=1;c<=fac;c++)
      x=c*x;

Repetir pa...
1. Pedir el numero
2. Asignarlo a la variable n.
3. Mandar a llamar a la función numeroscatalan.
4. Preguntar si el numero...
#include<stdio.h>
#include<conio.h>

main()
{
   int catalan,a,c,n,b=1,fac,x=1,factorial=1;
   printf("ttttNUMEROS DE CATA...
fac=n+1;
      for(c=1;c<=fac;c++)
    {
             x=c*x;
             }
    for(c=1;c<=n;c++)
    {
             facto...
#include<stdio.h>
#include<conio.h>
double res;
double numeroscatalan(double n);
main(double n)
{
printf("ttNUMEROS DE CAT...
double numeroscatalan(double n)
{
if (n==0) //Condicion de parada de la recursión
{
return 1;
}
else
{

return(2*((2*n)-1)...
El código se simplifica.
  Cuando utilizamos una estructura de datos recursiva ejemplo: arboles.
  Los algoritmos recursiv...
Upcoming SlideShare
Loading in...5
×

Catalan

511

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
511
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Catalan"

  1. 1. MENU RECURSIÓN E ITERATIVIDAD NUMEROS DE CATALAN ALGORITMOS EJECUCIÓN DE LOS ALGORITMOS CONCLUSIONES Y RECOMENDACION ES
  2. 2. La recursión o recursividad es un concepto amplio, con muchas variantes. Aparece en numerosas actividades de la vida diaria; por ejemplo en una fotografía donde se observa otra fotografía. La recursión es un recurso muy poderoso que permite expresar soluciones simples y naturales a ciertos tipos de problemas. Es importante considerar que no todos los problemas son naturalmente recursivos. Un objeto recursivo es aquel que aparece en la definición de sí mismo, así como el que se llama a sí mismo.
  3. 3. Subprograma P Directa: el programa o subprograma se llama -------------------------- directamente a sí mismo. -------------------------- -------------------------- -------------------------- Llamada a P Subprograma P Subprograma Q -------------------------- -------------------------- -------------------------- -------------------------- Indirecta: el -------------------------- -------------------------- -------------------------- -------------------------- subprograma llama a Llamada a Q Llamada a P otro subprograma, y éste, en algún momento, llama nuevamente a primero. La iteración es la repetición de una secuencia de instrucciones o eventos por un cierto numero de veces.
  4. 4. Estos números se utilizan en una gran variedad de problemas de combinatoria. Tienen varias aplicaciones; por ejemplo, determinar el numero de formas en que un polígono con n+2 lados se puede descomponer en n triángulos. En combinatoria los números de catalán forman una secuencia de números naturales. Obtienen su nombre del matemático belga Eugéne Charles Catalan El enésimo numero de catalán se obtiene con la formula con n>=0 La complejidad computacional de este problema es P ya que puede ser resuelto en un tiempo polinómico por una maquina Turing Determinista y que puede ser tratable.
  5. 5. El problema de distancia de Los numero s de catalán se puede realizar con recursión al igual que iterativamente. 1. Inicio 2. Asignar variables: a, c, n, b=1,fac,x=1,factorial=1. 3. Pedir el numero natural la cual será la posición del numero catalán. 4. Insertar el numero. 5. Asignarlo a la variable n. 6. La formula para sacar el numero de catalán es: Con esto separamos las operaciones en a= 2n; fac=n+1 y x. 7. Asignamos la primera operación a=2n y ponemos un for para sacar su factorial ya multiplicado: a=2*n; for(c=1;c<=a;c++) b=c*b; 7.1El resultado de la operación pasa al for y el resultado de la primera operación se va asignando a la variable b, lo cual se va multiplicando esta misma por todos los valores anteriores a n. El resultado se asigna a la variable b.
  6. 6. 8. Lo mismo pasa con la formula fac=n+1 Se hace con otro for : fac=n+1; for(c=1;c<=fac;c++) x=c*x; Repetir paso 7.1y el resultado se asigna a la variable x. 9. Con la tercera formula se hace lo mismo : for(c=1;c<=n;c++) factorial=c*factorial; Entonces se realiza lo mismo que en el paso 7.1 pero solo se saca el factorial de n, el resultado se asigna a la variable factorial. 10. Ya que sacamos el resultado de las tres formulas las juntamos: catalan= b/(x*factorial) 11. Se despliega el resultado.
  7. 7. 1. Pedir el numero 2. Asignarlo a la variable n. 3. Mandar a llamar a la función numeroscatalan. 4. Preguntar si el numero es igual a cero: Si es verdad numeroscatalan=1(estado basico) Falso numeroscatalan=(2*((2*n)-1))/(n+1)*numeroscatalan(n-1). 5. Imprimir numeroscatalan. 6.Fin Asintóticamente los números de catalán crecen:
  8. 8. #include<stdio.h> #include<conio.h> main() { int catalan,a,c,n,b=1,fac,x=1,factorial=1; printf("ttttNUMEROS DE CATALANn"); printf(“Numero:"); scanf("%d",&n); a=2*n; for(c=1;c<=a;c++) { b=c*b; }
  9. 9. fac=n+1; for(c=1;c<=fac;c++) { x=c*x; } for(c=1;c<=n;c++) { factorial=c*factorial; } catalan= b/(x*factorial); printf("catalan=%d",catalan); getche(); return 0; }
  10. 10. #include<stdio.h> #include<conio.h> double res; double numeroscatalan(double n); main(double n) { printf("ttNUMEROS DE CATALANn"); printf("Numero: "); scanf("%lf",&n); res=numeroscatalan(n); printf("Catalan:%.0lf",res); getche(); }
  11. 11. double numeroscatalan(double n) { if (n==0) //Condicion de parada de la recursión { return 1; } else { return(2*((2*n)-1))/(n+1)*numeroscatalan(n-1); } }
  12. 12. El código se simplifica. Cuando utilizamos una estructura de datos recursiva ejemplo: arboles. Los algoritmos recursivos ofrecen soluciones estructuradas, modulares y elegantemente simples. Cuando los métodos usen arreglos largos. Cuando el método cambie de manera impredecible de campos. Recomendamos utilizar solo la recursión cuando algún problema no se pueda realizar de forma iterativa o que sea más fácil realizarlo con recursión. Para este problema el algoritmo recursivo es mejor.

×