Ch1 z5e chem fnd

896 views
783 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
896
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Z5e 8 Table 1.1
  • Z5e 9 Table 1.2 (summarized)
  • Z5e 23 Fig. 1.9 & SE 1.10
  • Z5e 25 Section 1.8 Density
  • 105.8 g
  • 361 lbs + 75.0 lbs = 436 lbs (rounded)
  • Ch1 z5e chem fnd

    1. 1. Welcome to AP Chemistry pp
    2. 2. Ch. 1 Significant figures <ul><li>Meaningful digits in a MEASUREMENT </li></ul><ul><li>Exact numbers are counted , have unlimited significant figures </li></ul><ul><li>If it is measured or estimated, it has sig figs. </li></ul><ul><li>If not it is exact . . . </li></ul><ul><li>All numbers except zero are significant. </li></ul><ul><li>Some zeros are, some aren’t </li></ul>
    3. 3. Which zeroes count? pp <ul><li>In between other sig figs does </li></ul><ul><li>Before the first number doesn’t </li></ul><ul><li>After the last number counts if </li></ul><ul><li>it is after the decimal point </li></ul><ul><li>the decimal point is written in </li></ul><ul><li>3200 2 sig figs </li></ul><ul><li>3200 . 4 sig figs </li></ul>
    4. 4. Which zeroes count? <ul><li>Atlantic Pacific Rule </li></ul><ul><li>Decimal point P resent, use P acific Ocean </li></ul><ul><li>E.g., 0.002540 </li></ul><ul><li>Decimal point A bsent, use A tlantic Ocean </li></ul><ul><li>E.g., 2540 </li></ul>
    5. 5. Doing the math pp <ul><li>Multiplication and division, same number of sig figs in answer as the least in the problem </li></ul><ul><li>Addition and subtraction, same number of decimal places (vs. sig figs) in answer as least in problem. </li></ul>
    6. 6. More Preliminaries Scientific Method Metric System Uncertainty
    7. 7. Scientific method. <ul><li>A way of solving problems </li></ul><ul><li>Observation - what is seen or measured </li></ul><ul><li>Hypothesis - educated guess of why things behave the way they do. (possible explanation) </li></ul><ul><li>Experiment - designed to test hypothesis </li></ul><ul><li>leads to new observations, </li></ul><ul><li>and the cycle goes on </li></ul>
    8. 8. Scientific method. <ul><li>After many cycles, a broad, generalizable explanation is developed for why things behave the way they do. </li></ul><ul><li>This is a Theory </li></ul><ul><li>Also, a regular pattern of how things behave the same in different systems emerges. </li></ul><ul><li>This is a Law </li></ul><ul><li>Laws are summaries of observations </li></ul>
    9. 9. Scientific method. <ul><li>Theories have predictive value. </li></ul><ul><li>The true test of a theory is if it can predict new behaviors. </li></ul><ul><li>If the prediction is wrong, the theory must be changed. </li></ul><ul><li>Theory is the why </li></ul><ul><li>Law is the how </li></ul>
    10. 10. Observations Hypothesis Experiment Prediction Experiment Modify Law Theory (Model)
    11. 11. Metric System <ul><li>Every measurement has two parts: </li></ul><ul><li>Number </li></ul><ul><li>Scale (unit) </li></ul><ul><li>SI system (le Systeme International) is based on the metric system. </li></ul><ul><li>Prefix + base unit </li></ul><ul><li>Prefix tells you the power of 10 to multiply by - decimal system - easy conversions </li></ul>
    12. 12. Metric System <ul><li>Base Units </li></ul><ul><li>Mass - kilogram (kg) </li></ul><ul><li>Length - meter (m) </li></ul><ul><li>Time - second (s) </li></ul><ul><li>Temperature - Kelvin (K) </li></ul><ul><li>Electric current- ampere (amp, A) </li></ul><ul><li>Amount of substance - mole (mol) </li></ul>
    13. 13. Prefixes pp <ul><li>Giga - G 1,000,000,000 10 9 </li></ul><ul><li>mega - M 1,000,000 10 6 </li></ul><ul><li>kilo - k 1,000 10 3 </li></ul><ul><li>deci - d 0.1 10 -1 </li></ul><ul><li>centi - c 0.01 10 -2 </li></ul><ul><li>milli - m 0.001 10 -3 </li></ul><ul><li>micro - m 0.000001 10 -6 </li></ul><ul><li>nano - n 0.000000001 10 -9 </li></ul>
    14. 14. Deriving the Liter <ul><li>Liter is defined as the volume of 1 dm 3 </li></ul><ul><li>gram is the mass of 1 cm 3 </li></ul><ul><li>1 ml = 1 cm 3 </li></ul>
    15. 15. Figure 1.3 Measurement of Volume
    16. 16. Mass and Weight <ul><li>Mass is measure of resistance to change in motion </li></ul><ul><li>Weight is force of gravity. </li></ul><ul><li>Sometimes used interchangeably </li></ul><ul><li>Mass can’t change, weight can </li></ul>
    17. 17. Uncertainty <ul><li>Basis for significant figures </li></ul><ul><li>All measurements are uncertain to some degree </li></ul><ul><li>Precision - how repeatable </li></ul><ul><li>Accuracy - how correct - closeness to true value. </li></ul><ul><li>Random error - equal chance of being high or low - addressed by averaging measurements - expected </li></ul>
    18. 18. Figure 1.4 Common Types of Laboratory Equipment Used to Measure Liquid Volume
    19. 19. Figure 1.6 Measurement of Volume Using a Buret The volume is read at the bottom of the liquid curve (called the meniscus ).
    20. 20. Uncertainty <ul><li>Systematic error - same direction each time </li></ul><ul><li>Want to avoid this </li></ul><ul><li>Better precision implies better accuracy </li></ul><ul><li>you can have precision without accuracy </li></ul><ul><li>You can’t have accuracy without precision </li></ul>
    21. 21. Figure 1.7 The Difference between Precision and Accuracy
    22. 22. Dimensional Analysis Using the units to solve problems
    23. 23. Dimensional Analysis <ul><li>Use conversion factors to change the units </li></ul><ul><li>Conversion factors = 1 </li></ul><ul><li>1 foot = 12 inches (equivalence statement) </li></ul><ul><li>12 in = 1 = 1 ft. 1 ft. 12 in </li></ul><ul><li>2 conversion factors </li></ul><ul><li>multiply by the one that will give you the correct units in your answer. </li></ul>
    24. 24. Examples <ul><li>11 yards = 2 rod </li></ul><ul><li>40 rods = 1 furlong </li></ul><ul><li>8 furlongs = 1 mile </li></ul><ul><li>The Kentucky Derby race is 1.25 miles. How long is the race in rods, furlongs, meters, and kilometers? </li></ul><ul><li>A marathon race is 26 miles, 385 yards. What is this distance in rods, furlongs, meters, and kilometers? </li></ul>
    25. 25. Examples <ul><li>Science fiction often uses nautical analogies to describe space travel. If the starship U.S.S. Enterprise is traveling at warp factor 1.71, what is its speed in knots? </li></ul><ul><li>Warp 1.71 = 5.00 times the speed of light </li></ul><ul><li>speed of light = 3.00 x 10 8 m/s </li></ul><ul><li>1 knot = 2000 yd/h exactly </li></ul>
    26. 26. <ul><li>Apothecaries (druggists) use the following set of measures in the English system: </li></ul><ul><li>20 grains ap = 1 scruple (exact) </li></ul><ul><li>3 scruples = 1 dram ap (exact) </li></ul><ul><li>8 dram ap = 1 oz. ap (exact) </li></ul><ul><li>1 dram ap = 3.888 g </li></ul><ul><li>1 oz. ap = ? oz. troy </li></ul><ul><li>What is the mass of 1 scruple in grams? </li></ul>Examples
    27. 27. Examples <ul><li>The speed of light is 3.00 x 10 8 m/s. How far will a beam of light travel in 1.00 ns? </li></ul>
    28. 28. Temperature and Density
    29. 29. Temperature <ul><li>A measure of the average kinetic energy </li></ul><ul><li>Different temperature scales, all are talking about the same height of mercury. </li></ul><ul><li>Derive a equation for converting ºF toºC </li></ul>
    30. 30. 0ºC 32ºF 0ºC = 32ºF
    31. 31. 100ºC 212ºF 100ºC = 212ºF 0ºC 32ºF 0ºC = 32ºF
    32. 32. 100ºC 212ºF 0ºC 32ºF 100ºC = 212ºF 0ºC = 32ºF 100ºC = 180ºF
    33. 33. 100ºC 212ºF 0ºC 32ºF 100ºC = 212ºF 0ºC = 32ºF 100ºC = 180ºF 1ºC = (180/100)ºF 1ºC = 9/5ºF
    34. 34. ºC ºF
    35. 35. ºC ºF (0,32)= (C 1 ,F 1 )
    36. 36. ºC ºF (0,32) = (C 1 ,F 1 ) (120,212) = (C 2 ,F 2 )
    37. 37. Celsius/Fahrenheit Conversions <ul><li>Y - intercept is at 32 degrees F </li></ul><ul><li>T c = 5/9(T f - 32) </li></ul><ul><li>T f = (9/5 x T c ) + 32 </li></ul>
    38. 38. Figure 1.8 The Three Major Temperature Scales
    39. 39. Figure 1.9 Normal Body Temperature on the Fahrenheit, Celsius, and Kelvin Scales
    40. 40. Density <ul><li>Ratio of mass to volume </li></ul><ul><li>D = m/V </li></ul><ul><li>Useful for identifying a compound </li></ul><ul><li>Useful for predicting weight </li></ul><ul><li>An intrinsic property- does not depend on what the material is </li></ul>
    41. 41. Density Problem <ul><li>An empty container weighs 121.3 g. Filled with carbon tetrachloride (density 1.53 g/cm 3 ) the container weighs 283.2 g. What is the volume of the container? </li></ul>
    42. 42. Density Problem <ul><li>A 55.0 gal drum weighs 75.0 lbs. when empty. What will the total mass be when filled with ethanol? density 0.789 g/cm 3 1 gal = 3.78 L 1 lb = 454 g </li></ul>
    43. 43. Matter: Anything occupying space and having mass.
    44. 44. Classification of Matter <ul><li>Three States of Matter: </li></ul><ul><ul><li>Solid: rigid - fixed volume and shape </li></ul></ul><ul><ul><li>Liquid: definite volume but assumes the shape of its container </li></ul></ul><ul><ul><li>Gas: no fixed volume or shape - assumes the shape of its container </li></ul></ul>
    45. 45. Types of Mixtures <ul><li>Mixtures have variable composition. </li></ul><ul><li>A homogeneous mixture is a solution (for example, vinegar) </li></ul><ul><li>A heterogeneous mixture is, to the naked eye, clearly not uniform (for example, a bottle of ranch dressing) </li></ul>
    46. 46. Pure Substances <ul><li>Can be isolated by separation methods: </li></ul><ul><li> Chromatography </li></ul><ul><li> Filtration </li></ul><ul><li> Distillation </li></ul>
    47. 47. Figure 1.10 Simple Laboratory Distillation Apparatus
    48. 48. <ul><li>Element: A substance that cannot be decomposed into simpler substances by chemical means. </li></ul>Compound: A substance with a constant composition that can be broken down into elements by chemical processes.
    49. 49. Figure 1.13 The Organization of Matter

    ×