Face Recognition by Sumudu Ranasinghe

3,378 views
3,206 views

Published on

Sumudu Ranasinghe,
Uva wellassa University,
www.sumudur.info

Published in: Technology, News & Politics
2 Comments
5 Likes
Statistics
Notes
No Downloads
Views
Total views
3,378
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
411
Comments
2
Likes
5
Embeds 0
No embeds

No notes for slide

Face Recognition by Sumudu Ranasinghe

  1. 1. Research Paper Analysis<br />Ranasinghe A.A.S.P<br />UWU/IIT/08/033<br />Independent Study and Seminar IIT362-1<br />Industrial Information Technology<br />Uva Wellassa University Of Sri Lanka<br />
  2. 2. Presentation Outcomes<br />What is face Recognition?<br />How facial recognition works ?<br />Face detection and recognition.<br />Different approaches of face Recognition.<br />Feature extraction methods<br />Holistic methods<br />Hybrid methods<br />Problems<br /><ul><li>Applications Available in Market</li></li></ul><li>ABSTRACT<br />Images play an important role in todays information because A single image represents a thousand words.<br />Google's image search, where we can easily search for images using keywords.<br />Getting the computer to understand the semantics inside of images isn't easy. The reason for this is simply because the computer isn't able to understand the context.<br />But<br />
  3. 3. Keywords<br /> Face Detection<br />Face Recognition<br />
  4. 4. Introduction<br />Face recognition has become a popular area of research in computer vision and one of the most successful applications of image analysis and understanding. <br />A set of two task:<br />Face Identification: Given a face image that belongs to a person in a database, tell whose image it is.<br />Face Verification: Given a face image that might not belong to the database, verify whether it is from the person it is claimed to be in the database. <br />
  5. 5. How facial recognition works ?<br />
  6. 6. Face Detection + Recognition<br />Detection accuracy affects the recognition stage<br />Key issues:<br />Correct location of key facial features<br />(e.g. the eye corners)<br />False detection<br />Missed detection<br />
  7. 7. DIFFERENT APPROACHE<br />Describe the different methods of face recognition. <br />Feature extraction methods<br />Holistic methods<br />Hybrid methods<br />
  8. 8. Feature extraction methods<br />Feature extraction is the task where we locate facial features, <br />Eg: the eyes, the nose, and the chins etc.<br />This task may be performed after the face detection task Or recognition time.<br />big challenge for feature extraction methods is feature “restoration“.<br />Facial features are invisible according to the large variation.<br />
  9. 9. Feature extraction methods<br />This method is widely used to create individual vectors for each person in a system, the vectors are matched when an input image is being recognized.<br />
  10. 10. Kanade's approach<br />
  11. 11. Holistic methods<br />Holistic methods uses the whole face region as the input to a recognition system.<br />focuses a holistic method using eigenfacesto recognize still faces.<br />
  12. 12. Face Recognition Using Eigenfaces<br />The first stage is to insert a set of images into a database, these images are called the training set, this is because they will be used when we compare images and when we create the eigenfaces.<br />The second stage is to create the eigenfaces. Eigenfacescan now be extracted from the image data by using a mathematical tool called Principal Component Analysis (PCA).<br />When the eigenfaceshave been created, each image will be represented as a vector of weights.<br />The system is now ready to accept incoming queries.<br />
  13. 13. Face Recognition Using Eigenfaces<br />The weight of the incoming unknown image is found and then compared to the weights of those already in the system. If the input image's weight is over a given threshold it is considered to be unknown. The identification of the input image is done by finding the image in the database whose weights are the closest to the weights of the input image. The image in the database with the closest weight will be returned as a hit to the user of the system.<br />
  14. 14. Hybrid methods<br />Hybrid face recognition systems uses a combination of both holistic and feature extraction methods.<br />Hybrid method of face recognition by using 3D morphable model. The model makes it possible to change the pose and the illumination on the face.<br />
  15. 15. 3D morphablemodel<br />Took face recognition to a new level. By being able to use a morphable3D model to create synthetic images has proven to give good results. It is a very applicable approach that solves many of the problems.<br />system achieved a recognition rate of 90%.<br />
  16. 16. Problems of Face Recognition<br />when comparing a database image with an input image. The main concern is of course that all images of the same face are heterogeneous.<br />When image databases are created they contain good scenario images.<br />concerning deferent facial expressions as well. The system must be able to know that two images of the same person with deferent facial expressions actually is the same person.<br />makeup, posing positions, illumination conditions, and comparing images of the same person with and without glasses.<br />
  17. 17. Applications Available in Market<br /><ul><li>Face Recognition based Time Attendance System
  18. 18. Fastest and safest method of tracking employee time and attendance.
  19. 19. Easy to install and use.
  20. 20. Cost saving and convenient way of time tracking.
  21. 21. Provide easy and efficient way of recording attendance.
  22. 22. Easily manage employee time and attendance profiles.
  23. 23. Get rid of buddy punching.
  24. 24. Also manage employee payroll record.
  25. 25. On-demand time attendance record for reference.
  26. 26. Easily customizable as per your requirement.</li></li></ul><li>Applications Available in Market<br /><ul><li>Access Control System
  27. 27. Convenient and secure method of controlling door entry
  28. 28. Authentication by Facial Biometrics to gain entry
  29. 29. Higher security than conventional systems
  30. 30. No keys or cards to carry
  31. 31. No need to issue keys or cards for every user
  32. 32. Accurate recording of arrivals and departures
  33. 33. Real time monitoring of door access
  34. 34. Intelligent access control by group or time schedule </li></li></ul><li>Applications Available in Market<br /><ul><li>Facial Recognition PC Security</li></ul>Logon provides a simple but effective option. The integration of Logon and PC camera provides access only when a live-fed face image of authorized user is detected, thus effectively preventing unauthorized access. Logon is a non-invasive technology that does not require physical contact. <br />
  35. 35. Applications Available in Market<br /><ul><li>Face Biometric Login Through Web
  36. 36. Embeddable in any web page
  37. 37. Global Face Authentication capability
  38. 38. Free version available
  39. 39. View of authenticated clients
  40. 40. Messaging to Clients possible
  41. 41. Remote Backup/Restore
  42. 42. Google's Picasa
  43. 43. Facial Recognition Software in Online Gaming and Crime Prevention</li></li></ul><li>CONCLUSION<br /><ul><li>Introduction of face Recognition
  44. 44. How facial recognition works.
  45. 45. Face detection and recognition.
  46. 46. Different approaches of face Recognition.
  47. 47. Feature extraction methods
  48. 48. Holistic methods
  49. 49. Hybrid methods
  50. 50. Problems</li></li></ul><li>REFERENCES<br />W. Bledsoe. Man-machine facial recognition<br />J. Huang, B. Heisele, and V. Blanz. Component based face recognition with 3d morphable models. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.8373<br />T. Kanade. Computer Recognition of Human Faces<br />M. D. Kelly. Visual identification of people by computer.<br />www.inttelix.com - Application of face recognition<br />
  51. 51. Thank you<br />

×