BigML API Webinar - March 2014

10,030 views
10,788 views

Published on

Keynote from March 2014 Webinar on Building Predictive Apps with BigML's API

Published in: Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
10,030
On SlideShare
0
From Embeds
0
Number of Embeds
6,979
Actions
Shares
0
Downloads
16
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

BigML API Webinar - March 2014

  1. 1. BigML Inc API
  2. 2. BigML Inc !2 Today’s Webinar • Speaker: • Poul Petersen, CIO • Moderator: • Andrew Shikiar, VP Business Development • Enter questions into chat box – we’ll answer some via text; others at the end of the session • For direct follow-up, email us at info@bigml.com
  3. 3. BigML Inc !3 BigML Architecture sky wintermute apian https://bigml.com https://bigml.io API Layer Frontend Visualization Layer Backend Computation Layer Other Services
  4. 4. BigML Inc API Bindings Overview !4 API Introduction / Demo with1 Predictive Application Demo2 3 Programmatic ML Examples with4 Agenda BigMLer - a command line tool for ML5
  5. 5. BigML Inc !5 https://bigml.io/ / /{id}?{auth} source dataset model ensemble prediction batchprediction evaluation andromeda dev dev/andromeda • Path elements: • /andromeda specifies the API version (optional) • /dev specifies development mode • if not specified, then latest API in production mode • {id} is required for PUT and DELETE • {auth} contains url parameters username and api_key • api_key can be an alternative key
  6. 6. BigML Inc !6 https://bigml.io/....{JSON} {JSON} Operation HTTP Method Semantics CREATE POST Creates a new resource. Returns a JSON document including a unique identifier. RETRIEVE GET Retrieves either a specific resource or a list of resources. UPDATE PUT Updates a resource. Only certain fields are putable. DELETE DELETE Deletes a resource
  7. 7. BigML IncBigML Inc !7 Predict Color Pref?
  8. 8. BigML IncBigML Inc !8 App Architecture Web Server BrowserLogs Batch Upload / Model Real-Time request predict custom experience
  9. 9. BigML IncBigML Inc !9 Log Data user_agent color Mozilla/5.0 (Windows NT 6.1; WOW64; rv Yellow Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/ 33.0.1750.146 Safari/537.36 Green Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36 Green Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36 Yellow Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/ 33.0.1750.146 Safari/537.36 Red Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36 Red Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/33.0.1750.117 Safari/537.36 Yellow Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/ 33.0.1750.117 Safari/537.36 Yellow Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/33.0.1750.146 Safari/537.36 Red
  10. 10. BigML IncBigML Inc !10 New Features Mozilla/5.0 (iPhone; CPU iPhone OS 7_0_6 like Mac OS X) AppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0 Mobile/ 11B651 Safari/9537.5 Mobile Safari browser browser version os os version device 7 iOS 7.0.6 iPhone User-agent parser
  11. 11. BigML IncBigML Inc !11 New Features browser version os os version device color Other Windows 7 Other Yellow Chrome 33.0.1750 Linux Other Green Chrome 32.0.1700 Windows 8 Other Green Chrome 32.0.1700 Windows 7 Other Yellow Chrome 33.0.1750 Windows XP Other Red Chrome 32.0.1700 Mac OS X 10.9.1 Other Red Chrome 33.0.1750 Mac OS X 10.9.1 Other Yellow Chrome 33.0.1750 Windows 7 Other Yellow Chrome 33.0.1750 Mac OS X 10.9.1 Other Red
  12. 12. BigML IncBigML Inc !12 Model
  13. 13. BigML IncBigML Inc !13 JS Predictions . . .
  14. 14. BigML IncBigML Inc !14 Predictions
  15. 15. BigML IncBigML Inc !15 Gist http://bl.ocks.org/osroca/9474489
  16. 16. BigML Inc !16 BigML Bindings! https://bigml.com/developers ...And more:
  17. 17. BigML Inc !17 Operation HTTP Method Binding Method CREATE POST api.create_<resource>(from, {opts}) RETRIEVE GET api.get_<resource>(id, {opts}) api.list_<resource>({opts}) UPDATE PUT api.update_<resource>(id, {opts}) DELETE DELETE api.delete_<resource>(id) Binding Overview • Where <resource> is one of: source, dataset, model, ensemble, evaluation, etc • id is a resource identifier or resource dict • from is a resource identifier, dict, or string depending on context
  18. 18. BigML Inc !18 ToyBoost* orig dataset dataset +weight model source +predict batch predict dataset +predict *For Python Bindings Demonstration
  19. 19. BigML Inc !19 BigMLer •BigMLer wraps BigML’s API Python bindings •Issue complete train/evaluation cycle in one command •Can do cross-validation •Remote/Local predictions or even PredictServer •Define field types in a flat file •Multi-Label classifications BigMLer makes BigML even easier!

×