Your SlideShare is downloading. ×
0
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
BigML API Webinar - March 2014
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

BigML API Webinar - March 2014

5,722

Published on

Keynote from March 2014 Webinar on Building Predictive Apps with BigML's API

Keynote from March 2014 Webinar on Building Predictive Apps with BigML's API

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
5,722
On Slideshare
0
From Embeds
0
Number of Embeds
15
Actions
Shares
0
Downloads
13
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. BigML Inc API
  • 2. BigML Inc !2 Today’s Webinar • Speaker: • Poul Petersen, CIO • Moderator: • Andrew Shikiar, VP Business Development • Enter questions into chat box – we’ll answer some via text; others at the end of the session • For direct follow-up, email us at info@bigml.com
  • 3. BigML Inc !3 BigML Architecture sky wintermute apian https://bigml.com https://bigml.io API Layer Frontend Visualization Layer Backend Computation Layer Other Services
  • 4. BigML Inc API Bindings Overview !4 API Introduction / Demo with1 Predictive Application Demo2 3 Programmatic ML Examples with4 Agenda BigMLer - a command line tool for ML5
  • 5. BigML Inc !5 https://bigml.io/ / /{id}?{auth} source dataset model ensemble prediction batchprediction evaluation andromeda dev dev/andromeda • Path elements: • /andromeda specifies the API version (optional) • /dev specifies development mode • if not specified, then latest API in production mode • {id} is required for PUT and DELETE • {auth} contains url parameters username and api_key • api_key can be an alternative key
  • 6. BigML Inc !6 https://bigml.io/....{JSON} {JSON} Operation HTTP Method Semantics CREATE POST Creates a new resource. Returns a JSON document including a unique identifier. RETRIEVE GET Retrieves either a specific resource or a list of resources. UPDATE PUT Updates a resource. Only certain fields are putable. DELETE DELETE Deletes a resource
  • 7. BigML IncBigML Inc !7 Predict Color Pref?
  • 8. BigML IncBigML Inc !8 App Architecture Web Server BrowserLogs Batch Upload / Model Real-Time request predict custom experience
  • 9. BigML IncBigML Inc !9 Log Data user_agent color Mozilla/5.0 (Windows NT 6.1; WOW64; rv Yellow Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/ 33.0.1750.146 Safari/537.36 Green Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36 Green Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36 Yellow Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/ 33.0.1750.146 Safari/537.36 Red Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36 Red Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/33.0.1750.117 Safari/537.36 Yellow Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/ 33.0.1750.117 Safari/537.36 Yellow Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/33.0.1750.146 Safari/537.36 Red
  • 10. BigML IncBigML Inc !10 New Features Mozilla/5.0 (iPhone; CPU iPhone OS 7_0_6 like Mac OS X) AppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0 Mobile/ 11B651 Safari/9537.5 Mobile Safari browser browser version os os version device 7 iOS 7.0.6 iPhone User-agent parser
  • 11. BigML IncBigML Inc !11 New Features browser version os os version device color Other Windows 7 Other Yellow Chrome 33.0.1750 Linux Other Green Chrome 32.0.1700 Windows 8 Other Green Chrome 32.0.1700 Windows 7 Other Yellow Chrome 33.0.1750 Windows XP Other Red Chrome 32.0.1700 Mac OS X 10.9.1 Other Red Chrome 33.0.1750 Mac OS X 10.9.1 Other Yellow Chrome 33.0.1750 Windows 7 Other Yellow Chrome 33.0.1750 Mac OS X 10.9.1 Other Red
  • 12. BigML IncBigML Inc !12 Model
  • 13. BigML IncBigML Inc !13 JS Predictions . . .
  • 14. BigML IncBigML Inc !14 Predictions
  • 15. BigML IncBigML Inc !15 Gist http://bl.ocks.org/osroca/9474489
  • 16. BigML Inc !16 BigML Bindings! https://bigml.com/developers ...And more:
  • 17. BigML Inc !17 Operation HTTP Method Binding Method CREATE POST api.create_<resource>(from, {opts}) RETRIEVE GET api.get_<resource>(id, {opts}) api.list_<resource>({opts}) UPDATE PUT api.update_<resource>(id, {opts}) DELETE DELETE api.delete_<resource>(id) Binding Overview • Where <resource> is one of: source, dataset, model, ensemble, evaluation, etc • id is a resource identifier or resource dict • from is a resource identifier, dict, or string depending on context
  • 18. BigML Inc !18 ToyBoost* orig dataset dataset +weight model source +predict batch predict dataset +predict *For Python Bindings Demonstration
  • 19. BigML Inc !19 BigMLer •BigMLer wraps BigML’s API Python bindings •Issue complete train/evaluation cycle in one command •Can do cross-validation •Remote/Local predictions or even PredictServer •Define field types in a flat file •Multi-Label classifications BigMLer makes BigML even easier!

×