Advance ethernet

1,924
-1

Published on

Published in: Technology, Business
0 Comments
4 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,924
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
0
Comments
0
Likes
4
Embeds 0
No embeds

No notes for slide

Advance ethernet

  1. 1. By Bhavin Chauhan (09BCE005) Arpan Chavda (09BCE006)
  2. 2. What is Ethernet? <ul><li>Most widely-installed local area network (LAN) technology </li></ul><ul><li>IEEE 802.3 </li></ul><ul><li>Uses coaxial cable or special grades of twisted pair wires </li></ul><ul><li>Uses CSMA/CD protocol & Manchester Encoding </li></ul><ul><li>Advance Ethernet is advance version of Ethernet which is called as Ethernet 2.0 </li></ul>
  3. 3. Types of Advance Ethernet <ul><li>Switched Ethernet </li></ul><ul><li>Fast Ethernet </li></ul><ul><li>Gigabit Ethernet </li></ul>
  4. 4. 10Base5 10BaseT 10baseFL 100BaseTX 100BaseFX Media Thick coax RG-8, RG-11 TIA/EIA UTP Cat 3,4,5,5e,6 (2 pair) 62.2/125  Multi-mode Fiber TIA/EIA UTP Cat 5 and up (2 pair) 62.2/125  Multi-mode Fiber Or Single mode fiber Speed 10 Mbps 10 Mbps 10 Mbps 100 Mbps 100 Mbps Max Seg. Length 500 Meters 100 Meters 2000 Meters 100 Meters 400/2000 Meters (full/half duplex), 10 Km
  5. 5. Switched Ethernet <ul><li>First Ethernet switch introduced by Networking Company ,Kalpana ,later acquired by Cisco. </li></ul><ul><li>Operates at layer 2 of OSI model </li></ul><ul><li>Switches forward and filter frames based on LAN addresses </li></ul><ul><ul><li>It’s not a bus or a router (although simple forwarding tables are maintained) </li></ul></ul><ul><li>Very scalable </li></ul><ul><ul><li>Full duplex operation (send/receive frames simultaneously) </li></ul></ul><ul><li>Connect two or more “segments” by copying data frames between them </li></ul><ul><ul><li>Switches only copy data when needed </li></ul></ul><ul><li>Higher link bandwidth </li></ul><ul><li>Own collision domain </li></ul><ul><ul><li>Very less collision </li></ul></ul>
  6. 6. Example of switched Ethernet
  7. 7. Switching Techniques <ul><li>Store and forward switching. Stores the entire frame and performs a CRC check before forwarding. Best error correction, but takes the most time, impacting on speed. </li></ul><ul><li>Cut through switching. No error correction. Switch only reads address information. Provides best transmission speed, though on networks with a high number of frame errors this will end up slower than other methods. </li></ul><ul><li>Fragment free switching. Most frame corruption appears in the first 64 bytes of a frame. Fragment free checks only those bytes, discarding frames with errors. A good balance between error correction and speed. </li></ul>
  8. 8. Switch Learning <ul><li>Situation : Switch with </li></ul><ul><li>A1 On port1 </li></ul><ul><li>BF On Port2 </li></ul><ul><li>C9 On Port5 </li></ul><ul><li>Switch forwarding table is initially empty. </li></ul>
  9. 9. <ul><li>A1 on Port 1 wants to send to C9 on port 5 </li></ul><ul><ul><li>Switch does not know port for c9 </li></ul></ul><ul><ul><li>Broadcast the frame, acting as hub </li></ul></ul><ul><ul><li>Notes from source add. That A1 is on Port 1 </li></ul></ul><ul><ul><li>Adds this info. To switch forwarding table. </li></ul></ul>
  10. 10. <ul><li>C9 on Port 5 sends to A1 on Port 1 </li></ul><ul><ul><li>Table shows that A1 is on Port 1 </li></ul></ul><ul><ul><li>Switch only sends out Port 1: Act like a switch ! </li></ul></ul><ul><ul><li>Source add. Shows that C9 is on Port 5 </li></ul></ul><ul><ul><li>Switch adds this info. To forwarding table </li></ul></ul>
  11. 11. <ul><li>Every Few Minutes, Switch Erases switch forwarding table. </li></ul><ul><ul><li>To eliminate obsolete info. </li></ul></ul><ul><ul><li>Relearning is very fast </li></ul></ul>
  12. 12. <ul><li>Switches can be in hierarchy </li></ul><ul><ul><li>Switches only learn that stations are out certain ports </li></ul></ul>
  13. 13. Fast Ethernet <ul><li>“ 802.3u-1995 IEEE Standards for Local and Metropolitan Area Networks: Supplement to Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications Media Access Control (MAC) Parameters, Physical Layer, Medium Attachment Units, and Repeater for 100 Mb/s Operation, Type 100BASE-T” </li></ul>
  14. 14. History <ul><li>In July 1993, a group of networking companies joined to form the Fast Ethernet Alliance. </li></ul><ul><li>The charter of the group was to draft the 802.3u 100BaseT specification of the IEEE and accelerate market acceptance of Fast Ethernet technology. </li></ul><ul><li>Approved in 1995 </li></ul><ul><li>Other goals of the committee were: to maintain the Ethernet transmission protocol carrier sense multiple access collision detect (CSMA/CD); to support popular cabling schemes; and to ensure that Fast Ethernet technology will not require changes to the upper-layer protocols and software that run on LAN workstations. </li></ul>
  15. 15. Features of Fast Ethernet <ul><li>Fast Ethernet supports a maximum data rate of 100 Mbps </li></ul><ul><li>Ability to coexist with existing network installations. </li></ul><ul><li>( These so-called &quot;10/100&quot; adapters can usually sense the speed of the line automatically and adjust accordingly.) </li></ul><ul><li>Based on CSMA/CD Media Access Control (MAC) protocol </li></ul><ul><li>Data can move from 10 Mbps to 100 Mbps without protocol translation or changes to application and networking software. </li></ul>
  16. 16. <ul><li>Fast Ethernet maintains CSMA/CD, the Ethernet transmission protocol. However, Fast Ethernet reduces the duration of time each bit is transmitted by a factor of 10, enabling the packet speed to increase tenfold from 10 Mbps to 100 Mbps. </li></ul><ul><li>( 5.12 microseconds instead of 51.2 microseconds) </li></ul><ul><li>Data can move between Ethernet and Fast Ethernet without requiring protocol translation, because Fast Ethernet also maintains the 10BaseT error control functions as well as the frame format and length. </li></ul><ul><li>The encoding used is 4B/5B with MLT-3 wave shaping plus FSR. </li></ul>
  17. 17. MLT-3 Encoding <ul><li>MLT-3 encoding (Multi-Level Transmit) is a line coding that uses three voltage levels </li></ul>
  18. 18. Table : Fast Ethernet Cabling and Distance Limitations
  19. 19. Fast Ethernet <ul><li>The MII layer of 100BaseT couples these physical sublayers to the CSMA/CD MAC layer </li></ul><ul><li>For the physical connection, the MII is implemented on Fast Ethernet devices such as routers, switches, hubs, and adapters, and on transceiver devices using a 40-pin </li></ul><ul><li>connector </li></ul>
  20. 20. Designing with 100BaseT Ethernet Switch Ethernet Switch Server 100 Mbps links 10 Mbps links
  21. 21. Fast Ethernet Repeaters and Switches <ul><li>Class I Repeater – supports unlike physical media segments (only one per collision domain) </li></ul><ul><li>Class II Repeater – limited to single physical media type (there may be two repeaters per collision domain) </li></ul><ul><li>Switches – to improve performance can add full-duplex and have autonegotiation for speed mismatches. </li></ul>
  22. 23. Autonegotiation <ul><li>The 100BaseT specification describes a negotiation process that allows devices at each end of a network link to automatically exchange information about their capabilities and perform the configuration necessary to operate together at their maximum common level. </li></ul><ul><li>For example, autonegotiation can determine whether a 100-Mbps hub is connected to a 10-Mbps or 100-Mbps adapter and then adjust its mode of operation accordingly. </li></ul>-Cisco
  23. 24. Gigabit Ethernet <ul><li>IEEE Std 802.3z- was formally approved by the IEEE Standards Board on June 25th, 1998. </li></ul><ul><li>“ IEEE Std 802.3z, extends the operating speed of the world's most popular local area network to 1 billion bits per second (1000 Mb/s) for interconnecting high-performance switches, routers, and servers in the backbone of local area networks. Maintaining backward compatibility with the over-100-million-node installed base of 10 Mb/s and 100 Mb/s was a key requirement” </li></ul>
  24. 25. <ul><li>(GMII) is an interface between the Media Access Control (MAC) device and the physical layer (PHY). </li></ul>
  25. 26. Features <ul><li>Provides speeds of 1000 Mbps for half-duplex and full-duplex operation. </li></ul><ul><li>Uses Ethernet frame format and MAC technology </li></ul><ul><ul><li>CSMA/CD access method with support for one repeater per collision domain. </li></ul></ul><ul><ul><li>Backward compatible with 10 BASE-T and 100 BASE-T. </li></ul></ul><ul><li>Uses 802.3 full-duplex Ethernet technology . </li></ul><ul><li>All Gigabit Ethernet configurations are point-to-point! </li></ul>
  26. 27. <ul><li>Figure 4-22. (a) A two-station Ethernet. (b) A multistation Ethernet. </li></ul>Gigabit Ethernet Networks: Fast Ethernet
  27. 28. Architecture <ul><li>The challenges involved in accelerating to 1Gbps have been resolved by merging two technologies together: IEEE 802.3 Ethernet and ANSI X3T11 Fibre Channel. </li></ul><ul><li>Figure shows how key components from each technology have been leveraged to form Gigabit Ethernet. </li></ul>
  28. 29. Gigabit Ethernet Technology Table : Gigabit Ethernet cabling. <ul><li>1000 BASE SX fiber - short wavelength </li></ul><ul><li>1000 BASE LX fiber - long wavelength </li></ul><ul><li>1000 BASE CX copper - shielded twisted pair </li></ul><ul><li>1000 BASE T copper - unshielded twisted pair </li></ul><ul><li>Based on Fiber Channel physical signaling technology. </li></ul>
  29. 30. 1000 Base SX <ul><li>Supports duplex links up to 275 meters. </li></ul><ul><li>770-860 nm range; 850 nm laser wavelength </li></ul><ul><li>Fiber Channel technology </li></ul><ul><li>PCS (Physical Code Sublayer) includes 8B/10B encoding with 1.25 Gbps line. </li></ul><ul><li>Only multimode fiber </li></ul><ul><li>Cheaper than LX </li></ul>
  30. 31. 1000 Base LX <ul><li>Supports duplex links up to 550 meters. </li></ul><ul><li>1270-1355 nm range; 1300 nm wavelength using lasers. </li></ul><ul><li>Fiber Channel technology </li></ul><ul><li>PCS (Physical Code Sublayer) includes 8B/10B encoding with 1.25 Gbps line. </li></ul><ul><li>Either single mode or multimode fiber. </li></ul>
  31. 32. 1000 Base CX <ul><li>Shielded twisted pair. </li></ul><ul><li>25 meters or less typically within wiring closet. </li></ul><ul><li>PCS (Physical Code Sublayer) includes 8B/10B encoding with 1.25 Gbps line. </li></ul><ul><li>Each link is composed of a separate shielded twisted pair running in each direction. </li></ul>
  32. 33. 1000 Base T <ul><li>Twisted Pair Cables </li></ul><ul><li>Four pairs of Category 5 UTP. </li></ul><ul><li>IEEE 802.3ab ratified in June 1999. </li></ul><ul><li>Category 5, 6 and 7 copper up to 100 meters. </li></ul><ul><li>This requires extensive signal processing . </li></ul>
  33. 35. Carrier Extention RRRRRRRRRRRRR Frame 512 bytes <ul><li>For 10BaseT : 2.5 km max; slot time = 64 bytes </li></ul><ul><li>For 1000BaseT: 200 m max; slot time = 512 bytes </li></ul><ul><li>Carrier Extension : continue transmitting control characters [R] to fill collision interval. </li></ul><ul><li>This permits minimum 64-byte frame to be handled. </li></ul><ul><li>Control characters discarded at destination. </li></ul>
  34. 36. 512 bytes Extension Frame Frame Frame Frame Frame burst <ul><li>Source sends out burst of frames without relinquishing control of the network. </li></ul><ul><li>Uses Ethernet Interframe gap filled with extension bits (96 bits) </li></ul><ul><li>Maximum frame burst is 8192 bytes </li></ul><ul><li>Three times more throughput for small frames. </li></ul>
  35. 37. References <ul><li>Computer Networks 4e by Andrew S. Tanenbaum </li></ul><ul><li>www.cisco.com </li></ul><ul><li>www.intel.com/network/ </li></ul><ul><li>Standards.ieee.org/catalog </li></ul><ul><li>grouper.ieee.org/groups/802/3 </li></ul><ul><li>www.ethermanage.com </li></ul><ul><li>Wikipedia.org </li></ul><ul><li>compnetworking.about.com </li></ul>
  36. 38. <ul><li>-Bhavin Chauhan </li></ul><ul><li>-Arpan Chavda </li></ul>Thank You

×