Materiales bioplasticos, versión 2014
Upcoming SlideShare
Loading in...5
×
 

Materiales bioplasticos, versión 2014

on

  • 69 views

Presentación de materiales bioplásticos y sus aplicaciones. Tecnología de materiales para el diseño.

Presentación de materiales bioplásticos y sus aplicaciones. Tecnología de materiales para el diseño.

Statistics

Views

Total Views
69
Views on SlideShare
69
Embed Views
0

Actions

Likes
0
Downloads
2
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Materiales bioplasticos, versión 2014 Materiales bioplasticos, versión 2014 Presentation Transcript

  • BioplásticosAlberto Rossa Sierra / Francisco J. González Madariaga
  • Definición Se denomina bioplástico a un tipo de plásticos derivados de productos vegetales, tales como el aceite de soya, el maíz o la fécula de papa, a diferencia de los plásticos convencionales, que son derivados del petróleo. Los plásticos tradicionales (PE, PP, ABS, PET, entre otros) están sintetizados a partir del petróleo por la industria petroquímica. La carestía de este combustible fósil, su carácter de resistencia a la degradación natural y el hecho de que es una fuente que, tarde o temprano, acabará por agotarse, ha llevado a algunas partes de la industria a buscar alternativas. El ácido poliláctico, sintetizado a partir del maíz, es hasta ahora el mas desarrollado.
  • Mas o menos la cuenta sale así...
  • 65% Diseño para reciclaje o utilización del material reciclado 57% Reducción del peso del producto 41% Materiales renovables o bio-materiales 25% Materiales compostables Hacia donde se dirige la investigación
  • El ácido poliláctico o PLA es un polímero del ácido láctico que puede reemplazar a los polímeros basados en recursos no renovables. Las ventajas son su biodegradabilidad y su posible procedencia a partir de materias primas renovables. La principal ruta seguida actualmente para la producción comercial de ácido láctico está basada en el uso de sustratos azucarados o amiláceos (normalmente de origen vegetal) por parte de bacterias fermentativas. Entre los diferentes materiales plásticos biodegradables, el ácido poliláctico (PLA) es el que mayor potencial posee como sustituto del plástico convencional, porque además de sus excelentes propiedades mecánicas y físicas, puede ser procesado por la maquinaria ya existente. El PLA es también un material muy versátil ya que puede ser elaborado con varias formulaciones para alcanzar la mayoría de especificaciones de los diferentes productos. Ácido poliláctico PLA
  • plants 100% annually renewable sources science plant sugars transformed into Ingeo™ biopolymer recovery offers the potential of more disposal options* environment less fossil fuel used in production production Ingeo™ fibers and natural plastics are created climate less greenhouse gas emissions How it’s made. We use sugars taken from plants grown every year and transform this into Ingeo™ biopolymer, an ingenious material that’s used to design Ingeo™ innovations for clothing, personal care, the home, garden, electronics, appliances and new fresh food bio-packaging.
  • Ingeo™ plastics and fibers are transforming the everyday products found on retail shelves and in consumers’ homes around the world. Here is a look at how we turn simple plant sugar into this ingenious material made from plants, not oil. Dextrose (sugar) Turning Sugar Once we’ve made our Ingeo biopolymer, our partners transform it into innovative products including food serviceware, fresh food packaging, electronics, flexible films, cards, nonwovens, apparel and home textiles. Since the Ingeo carbon footprint for Ingeo is 60%2 lower than traditional materials like PS or PET, our partners are able to offer consumers a more responsible choice in buying everyday items. 4 Innovating with Ingeo Water is taken in from the soil by the roots Carbon dioxide from the air is absorbed by the leaves of a plant Sunlight provides the energy needed to transform carbon dioxide and water into glucose and oxygen - a process called photosynthesis. Glucose (sugar) is made by the plant and used as fuel. Any unused sugar is stored as starch and can be harvested to use for making Ingeo biopolymer Oxygen is released back into the atmosphere ++ + = 2 Photosynthesis: Nature’s Way of Making Sugar Ingeo Biopolymer Starts with Plants This revolutionary bioplastic is made up of long molecular chains of the polymer polylactide. It is derived from naturally-occurring plant sugar. 1 Feedstock Options Ingeo is made from dextrose (sugar) that is derived from field corn already grown for many industrial & functional end-uses. In North America, corn has been used first because it is the most economically feasible source of plant starches. We use less than 1/25th of 1% (0.04%) of the annual global corn crop today, so there’s little to no impact on food prices or supply1 . Our process does not require corn; we only need a sugar source. In the future this will include cellulosic raw materials, agricultural wastes and non-food plants.
  • A chain of polymer can consist of tens of thousands of units linked together. Ring Dextrose (sugar) is created from the harvested plant starch (made during photosynthesis) through a process called hydrolysis. Lactide Ingeo polylactide polymer (PLA) A 2-step process transforms the lactic acid molecules into rings of lactide. The lactide ring opens and links together to form a long chain of polylactide polymer. This is the process of polymerization. The plastic is then formed into Ingeo pellets and is used by our partners to make a wide-range of products including food serviceware, fresh food packaging, consumer electronics, flexible films, cards, nonwovens, apparel and more. For more information about NatureWorks and Ingeo, please visit www.natureworksllc.com. 3 Turning Sugar into Polymer Once we’ve made our Ingeo biopolymer, our partners transform it into innovative products including food serviceware, fresh food packaging, electronics, flexible films, cards, nonwovens, apparel and home textiles. Since the Ingeo carbon footprint for Ingeo is 60%2 lower than traditional materials like PS or PET, our partners are able to offer consumers a more responsible choice in buying everyday items. 5 Ingeo has more end-of-life options than any traditional plastic. Products made with Ingeo are compatible with existing recycling systems, can be cleanly incinerated, and are completely stable in landfill – still the unfortunate fate for most of today’s plastics. When thinking about environmental impact, it’s important to recognize that true eco- advantage starts at the beginning. By design, using Ingeo results in 60% less greenhouse gases than the oil-based PET or PS plastic it replaces, even if both end up in a landfill. More End-of-Life Options Feedstock RecoveryComposting Recycling LandfillIncineration Lactic acid molecules BottlesDurables Apparel Films HomewareNonwovens Folded CartonsCards Containers Serviceware Microorganisms convert the sugar into lactic acid through fermentation.
  • Comparativa de emisiones de Gas Comparativa de uso de energía no renovable
  • Composting
  • Los polihidroxialcanoatos (PHAs), son polímeros producidos como material de reserva por diversos grupos bacterianos que resultan de gran aplicación en biotecnología y en la industria farmacéutica. Son sintetizados cuando el medio de cultivo posee una fuente de carbono en exceso y un defecto de otro tipo de nutriente, normalmente nitrógeno o fósforo. Se depositan en las bacterias como cuerpos de inclusión, ocupando incluso más del 90% del peso, que serán utilizados como fuente de carbono y energía en condiciones de escasez nutricional. El polihidroxialcanato más conocido y usado es el ácido poli-3-hidroxibutírico (PHB). Las propiedades del polímero que forma son similares a las del propileno, por lo que se define como un termoplástico. La diferencia principal que posee con los polímeros derivados del petróleo es su biodegradabilidad por microorganismos (bacterias, hongos y algas) que transforman el PHA en sustancias inocuas tales como CO2 y agua. Polihidroxialcanoatos PHA
  • Using a new Ingeo blend formulation, Polenghi LAS developed Europe’s first extrusionblow-molded bio-based bottle. The material is made from renewable plant material, not oil. By switching from polyolefin resin to Ingeo bio-plastic for packaging 10 million bottles of its new Bio organic lemon juice, Polenghi will conserve 1,000 barrels of oil and reduce CO2 emissions by 126 tons.
  • HDPE con azúcar, para 2020 el 25% de todos sus envases serán reciclables
  • PLA ácido poliláctico