Your SlideShare is downloading. ×
Warr Jussieu Presentation 240406
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Warr Jussieu Presentation 240406

944
views

Published on

Question Croissance, Energie et Technologie

Question Croissance, Energie et Technologie

Published in: Business

1 Comment
1 Like
Statistics
Notes
No Downloads
Views
Total Views
944
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
17
Comments
1
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. On Economic Growth, Energy Consumption and Technological Change Jussieu 24 Avril 2006 Dr Benjamin Warr Professor Robert Ayres
  • 2. Sommaire • Critique de l’approche «neo-classique » de la croissance économique • Considération de la rôle d’énergie • Estimation d’une « proxy » mesure de Technologie • Développement d’une méthode pour estimer la croissance du Produit Intérieur Brut.
  • 3. Problématique • L’approche neo-classique économique – Ignore l’environnement et des ressources naturelles • Comme facteur de production • Comme bien collectif – Considère la technologie comme exogène, continue et perpétuelle. • Mais le progrès technologique est plutôt non linéaire (learning by doing) avec des limites
  • 4. Une fonction de production • Décrit les relations entre le « output » (PIB) et les « inputs », (les facteurs de production) • Cobb-Douglas ont développe la forme le plus utilisé, Y = A KαLβ where α + β = 1 • Y=PIB, A=technology multiplier, K=capital, L=labour, α et β les élasticités de production
  • 5. Quelques problèmes • Les ressources naturelles exclus…. • Constant returns to scale (rendement constant) • Le dérivative défini la productivité marginal de chaque facteur en tant que constant, égal au « factor cost » α =0.3 capital, β =0.7 labour. • Static substitution • Rendu dynamique avec multiplicateur technologie (A), l’erreur d’une modèle OLS. • PAS de RETROACTION suites aux changements dans le quantité et qualité du bilan énergétique.
  • 6. PIB et les facteurs de production, K, L, B, US 1900-2000 25 PIB (Y) Capital (K) 20 Labour (L) Ressources Naturelles (B) index (1900=1) 15 10 5 0 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 année
  • 7. PIB empirique et estimé, et l'erreur (le progres technologique) 25 PIB empirique 20 PIB estimé (Cobb-Douglas) index (1900=1) Erreur (technological progress) 15 10 5 0 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 année
  • 8. Observations • Même avec inclusion des ressources naturelles (B) le PIB estimé est inférieur au valeur empirique si on utilise les « factor costs » pour définir les paramètres. • Le progrès technologique (l’erreur) est responsable pour plus que 80% de la croissance. • Si on utilise pour prévision on est obligé de faire l’hypothèse que la technologie va développer comme avant. La croissance économique est assuré malgré nos actions.
  • 9. Industrial Metabolism (Ayres and Simonis 1994) • New conceptualisation of society’s relation to and pressures on the environment. • The economy is physically embedded into the environment. • The economy is an open-system with regards matter & energy. • Matter and energy societal throughputs must => minimum requirements = technological progress. • RESOURCE SCARCITY: Societies intervene with purpose to gain better access to supplies of natural resources (through technology and resource substitutions .i.e. energy) – a supply-side problem. • ASSIMILATIVE CAPACITY: Societies must restrict waste flows to the environment (output side).
  • 10. The Salter Cycle, an engine for growth. Product R&D Substitution of Improvement Knowledge for Labour; Capital; and Exergy Process Improvement Substitution of Exergy for Labour Lower Limits to and Capital Costs of INCREASED REVENUES Production Increased Demand for Final Goods and Services Economies of Lower Prices of Scale Materials & Energy
  • 11. Criteria for Environmental Accounting • Environmental accounting must be: – Politically relevant – strength of the concept to provide information for policy decision and public discourse. – Feasibility often requires reduced complexity – Definition of scale and then system boundaries – Accurate source information – Methods to estimate stocks & flows
  • 12. Energie comme facteur de production – quel mesure faut il? • Pas tout l’énergie utilisé est utile dans l’économie – conséquence du 2eme loi de Thermodynamique. • Faut considérer la quantité plus qualité de l’énergie utilisé • Faut quantifier le progrès technologique et l’effet sur la quantité et le façon qu’on utilise énergie.
  • 13. Task efficiency: specify service & define the task • The first objective of any technical study of energy use is to establish a standard of performance. • What is the difference between a service and a task? – (service) keeping warm, (task) providing heat to a home – (service) structures in society, (task) making aluminium – (service) mobility, (task) moving a vehicle • Services must consider non-technical trade-offs, tasks require only a physics perspective. • This permits, a) Evaluation of the efficiency of present uses. b) Definition of goals towards which technical innovation can strive.
  • 14. Thermodynamics and « available work » Necessary to define a Minimum Task Energy to allow consideration of : • Interchanging devices or systems (mass transport vs. Cars) • Seeking technological innovations (aluminium for steel) • The 1st Law (convervation of energy) is inadequate for considering minimimum task energy. • The 2nd law (the entropy law) indicates that « in any process involving heat, there is an inexorable increase of entropy (disorder), meaning that not all the energy is available in useful form »
  • 15. The 1st Law (conservation of energy) is inadequate for considering minimimum task energy. • η = energy transfer (of desired kind) / energy input • Maximum value may be greater than 1. • No explicit consideration of the quality of the energy and its ability to do useful work. • Cannot be generalised to complex systems with work and heat outputs.
  • 16. The 2nd law (the entropy law) • indicates that « in any process involving heat, there is an inexorable increase of entropy (disorder), meaning that not all the energy is available in useful form » • For any device or system the 2nd Law Efficiency ε is the ratio of the minimum exergy that could perform the task (Bmin), to the exergy actually consumed in doing the job (Bactual). • Its maximum value is 1. • Maximising ε minimises exergy demand and wastes generated for a given task.
  • 17. Exergy and Exergy Balance • Exergy is the useful part of the energy. • There are 4 components: – Kinetic exergy of bulk motion – Potential gravitational or electro-magnetic field differentials – Physical exergy from temperature and pressure differentials – Chemical exergy arising from differences in chemical composition • We can ignore the first two for many industrial and economic applications.
  • 18. Exergy or « Available Work » • So, not all energy can be made available in useful form (consequence of 2nd Law). • Available work is an energy measure that is actually consumed in a process. • Work is the highest quality (lowest entropy) form of energy. It is often called exergy. • Exergy = The maximum amount of work that a subsystem can do on it’s surroundings as it approaches thermodynamic equilibrium reversibly. • Exergy is proportional to the future entropy production, but has units of energy. • Exergy is gained or lost in physical processes. • Minimising exergy consumption is a measureable objective to optimise energy consuming tasks.
  • 19. Example: Chemical exergy • Production of pure iron (Fe2) from iron oxide (Fe2O3) • This requires exergy from burning coke (pure carbon) • Carbon dioxide (CO2) is the waste product 2Fe2O3 + 3C 4Fe + 3CO2 Correct mass balance – all atoms in ome out. Conversion of mass causes inevitable joint product CO2 • 0.75 moles of CO2 per Kg of Fe.
  • 20. Iron production 1 1. 2Fe2O3 + 3C 4Fe + Weight kJ/mole 3CO2 exergy 2. Making 4 moles of Fe Fe 56 376.4 requires generation of 3 moles of CO2 Fe2O3 160 16.5 3. And 1505.6 Kj which comes from this C 12 410.3 oxidation of carbon 4. But 3 moles of C CO2 44 19.9 contain only 1230.9 5. We need 0.76 C extra. O2 32 4.4
  • 21. Iron Production 2 2Fe2O3 + 3C 4Fe + 3CO2 Correct mass balance, incorrect exergy balance 2 Fe2O3 + 3.76 C + 0.76 O2 4 Fe + 3.76 CO2 (33.0) (1542.7) (3.0) (1505.6) (74.8) On the input side oxygen has been added to fulfill the balance of the extra C required 1580 kJ in 1580 kJ out • This is for an ideal reversible transformation. No entropy generated or exergy lost. • Hence 0.94 moles of waste CO2 are inevitable per mole Fe produced (corresponds to 0.74kg CO2 per kg Fe) • This is the thermodynamic minimum.
  • 22. Iron Production: Reality • The 410.3 kJ/mole from source C is never used 100% efficiently • Blast furnace average have efficiencies of 33%. • So, one mole of C one obtains only 135.4kJ • As a result need 12.42 moles of C instead of 3.76. 2 Fe2O3 + 12.42 C + 9.42 O2 4 Fe + 12.42 CO2+ heat (33.0) (5095.9) (37.7) (1505.6) (247.2) • B lost = 3413.8 kJ • 2/3 rd of waste produced is unecessary.
  • 23. Types of Exergy Service • Prime Movers ( electricity) • Transport • High Temperature Process Heat • Mid and Low Temperature Process Heat • Lighting • Non-Fuel
  • 24. Petroleum Products Apparent Consumption Petroleum Exergy Gasoline Flows Diesel Transport Aviation Fuel Electricity Furnace Oil Space Heating Heavy Fuel Oil Process Heat Transport Kerosene Lighting Petroleum Coke Process Heat Feedstock Non Fuel Bitumen/ Waxes LPG Allocated to gas flows
  • 25. Coal, Petroleum, Gas: Exergy breakdown by use, US 1900-2000 Transport uses Figure 9. Petroleum and NGL consumption: Exergy Figure 8. Coal consumption: Exergy allocation among Figure 10. Natural Gas consumption: Exergy allocation allocation among types of work, USA 1900-1998 types of work, USA 1900-1998 among types of work, USA 1900-1998 90% 100% 100% HEAT HEAT ELECTRICITY ELECTRICITY PRIME MOVERS 90% PRIME MOVERS 80% 90% NON-FUEL NON-FUEL LIGHT 80% 80% 70% HEAT 70% 70% ELECTRICITY 60% PRIME MOVERS NON-FUEL 60% 60% 50% Fraction (%) Fraction (%) Fraction (%) 50% 50% 40% 40% 40% 30% 30% 30% 20% 20% 20% 10% 10% 10% 0% 0% 0% 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 year year year Declining fraction Increasing fraction to heat to electricity
  • 26. Total Exergy Breakdown by Use, US 1900-2000 90% HEAT ELECTRICITY PRIME MOVERS 80% NON-FUEL LIGHT 70% Heat 60% 50% Fraction (%) 40% Other Prime Electricity 30% Movers 20% 10% Non-Fuel 0% 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 year
  • 27. 3.50% Lighting Efficiency 3.00% 2.50% efficiency 2.00% 1.50% 1.00% 0.50% 0.00% 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 year Efficiency (%) Year Kerosene Incandescent Fluorescent Average Efficiency Efficiency (%) 1% 5% 15% Market Share (%) 1900 20% 80% 0% 1.400% 1950 5% 70% 25% 2.433% 1972 1% 65% 33% 2.737% 2000 1% 60% 39% 2.953%
  • 28. Bauxite Ore 3.9kg (4.1MJ) Simplified Coal, Oil, Gas 1900 = 82 MJ/kg process view: Refining 2000 = 28 MJ/kg Aluminium Electricity Electrolysis 1900 = 190 MJ/kg 2000 = 66 MJ/kg Cokes Casting 1900 = 20 MJ/kg 2000 = 10 MJ/kg MJ/1000kg % of total Aluminium Coal 4092 5% Oil 10912 14% 1kg (32.8MJ) Gas 8281 11% Electricity 56559 70% Total 79845 100.00% Table 1. Breakdown of total fuel exergy inputs for the production of 1 ton of primary aluminium (source: IAI LCS 2000).
  • 29. Exergy consumption per kg of Al produced 250 Bauxite 200 Coke Coal, oil and gas Electricity 150 MJ/kg 100 50 0 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 year Figure 1. Exergy consumed per kg primary aluminium produced. *electricity consumption adapted from Energy Implications of the Changing World of Aluminium Metal Supply (JOM 2004).
  • 30. Efficiencies and GDP/Exergy Input 40% Electric Power Generation & 35% Distribution 30% High Temperature 25% Industrial Heat ffic n y e ie c 20% Medium Temperature 15% Industrial Heat 10% Mechanical Work 5% Low Temperature Space Heating 0% 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 year
  • 31. Technical efficiency, US 1900-2000 0 ,18 0 ,16 0 ,14 techni ca l efficiency, f 0 ,12 0,1 0 ,08 0 ,06 emp ir ica l (U/ R)" 0 ,04 b ilog istic mod el 0 ,02 0 25 6 95 14 86 26 60 4 6 77 7 11 3 cumula tive prima ry e xe rgy prod uction (eJ) Sour ce Data : Ayres, Ayr es and War r, 2003
  • 32. Useful Work/GDP Ratios, 5.0 US 1900-2000 work (Ue) / GDP ratio 4.5 work (Ub) / GDP ratio 4.0 3.5 3.0 1st Oil ratio 2.5 Crisis - US 2.0 Peak Oil 1.5 Production 1.0 0.5 0.0 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 year
  • 33. How does our model work ? Yt = Q(K t , Lt , Rt ), Cobb-Douglas or LINEX ( Yt )=((K)t )( (Lt ) (Ft Rt ) α β γ = K tα Lβ U tγ t    L + U   L  Yt = U expa 2 −     + ab − 1    K  U  • At the ‘total factor productivity’ is REMOVED • Rt natural resource services replaced by Useful Work, where U = F * R • Ft technical efficiency of energy to work conversion
  • 34. REXS economic output module Exe rgy Labour Capital Serv ice s Linex parameter a ICT Fraction of Gross Output Capital Linex parameter b ICT Capital Linex Growth Rate Parameter c Cumulativ e Production Monetary Monetary Output
  • 35. Labour supply feedback dynamics Labour Labour Hire Labour Fire Rate Rate <Time> Fr actional Fr actional Labour Hire Rate Labour Fire Rate A A Structural Shift Structural Shift Time C Time D Fr actional Fr actional Labour Hire Rate Labour Fire Rate B B Parameters for USA 1900-2000 • Structural Shift Time C=1959, Structural Shift Time D=1920 • F Labour Fire Rate A=0.108, F Labour Fire Rate B=0.120 • F Labour Hire Rate A=0.124 F Labour Hire Rate B=0.135
  • 36. Labour “hire and fire” parameters Simulated labour hire and fire rate, USA 1900-2000 0,45 Labour Hire Rate 0,4 Labour Fire Rate rate (standardised labour units per year) 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 year
  • 37. Labour – validation by empirical fit Simulated and empirical labour, USA 1900-2000 3,5 empirical 3 simulated normalised labour (1900=1) 2,5 2 1,5 1 0,5 0 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 year
  • 38. Capital accumulation feedback loop <Gr oss Output> Capital Inv e stme nt Depre ciation Investment Inv e stme nt Depre ciation Depreciation Fraction A Fraction Rate Rate A Investment Depreciation Fraction B Rate B Structural Shift <Time> Structural Shift Time A Time B Parameters for USA 1900-2000 • Investment Fraction A=0.081 Investment Fraction B=0.074 • Depreciation Rate A=0.059 Depreciation Rate B=0.106 • Structural Shift Time A=1970 Structural Shift Time B=1930
  • 39. Capital investment and depreciation Simulated investment and depreciation, USA 1900-2000 1.8 investment 1.6 depreciation 1.4 normalised capital (1900=1) 1.2 1 0.8 0.6 0.4 0.2 0 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 year
  • 40. Capital – validation by empirical fit Simulated and empirical capital, USA 1900-2000 14 empirical 12 simulated normalised capital (1900=1) 10 8 6 4 2 0 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 year
  • 41. Output – validation of full model, US 1900-2000 14 empirical 12 simulated 10 normalised capital (1900=1) 8 6 4 2 0 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 year
  • 42. LINEX fits for GDP, Japan and US 1900-2000. 8000 empirical GDP, Japan 7000 predicted GDP, Japan GDP (thousand billion 1992$) 6000 empirical GDP, US 5000 predicted GDP, US 4000 3000 2000 1000 0 1900 1920 1940 1960 1980 year
  • 43. Estimates of GDP, France 1960-2000 4 Y 3.5 LINEX Time Dependent CD Time Average CD 3 2.5 output (1960=1) 2 1.5 1 0.5 0 1963 1968 1973 1978 1983 1988 1993
  • 44. A commonly used reference mode Energy Intensity of Capital, USA 1900-2000. 28 Start of the Great Depression b/k - total primary exergy supply 26 (energy carriers, metals, minerals and phytomass exergy) 24 e/k - total fuel exergy supply (energy carriers only) 22 20 index 18 16 14 12 10 End of World War II 8 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 year
  • 45. The REXS alternative Simulated and empirical primary exergy intensity of output, USA 1900-2000 1.2 1 Average rate of 0.8 decline 1.2% r/y (1900=1) 0.6 per annum 0.4 0.2 empirical simulated 0 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 year
  • 46. The “dematerialising” dynamics Declining resource inte nsity of output cumulative output experience Continuing historical Economic tre nds of te chnical output e fficie ncy growth cumulative exergy pr oduction experience Use ful wor k supply
  • 47. Primary exergy intensity (B/GDP) of output decay feedback mechanism. <Gr oss Primary Exe rgy Output> Inte nsity of Output Rate of Decay Fractional Primary Exe rgy Decay Rate Demand Parameters Product Improvement R&D Substitution of Knowledge for Labour; • Rate of Decay = Fractional Capital; and Exergy Decay Rate*Primary Exergy Process Improvement Intensity of Output Substitution of Exergy for Labour Lower Limits to and Capital • Fractional Decay Rate=0.012 INCREASED REVENUES Costs of Production Increased Demand for To the right: Final Goods and Services Lower Prices of Processes aggregated in Economies of Scale Materials & Energy the REXS dynamics
  • 48. Projections of future output Altering the future rates of the energy intensity of output •The average decay rate of the exergy intensity of output (R/GDP) for the period 1900-1998 is 1.2% •The simulations involved increasing or decreasing this parameter from 1998 onwards, while keeping the values of all other parameters fixed. •The following illustrations provide a summary of the results.
  • 49. Varying rates of dematerialisation Primary Exergy Intensity of Output Decline Rate The constant 0 rate of exergy historical trend 50% 75% 95% 100% intensity decline was altered to -0.5 vary between – 0.55 and –1.65 % p.a. (%) -1 -1.5 -2 1900 1938 1975 2013 2050 Year
  • 50. Effects on ‘efficiency’ improvements Technical Efficiency of Primary Exergy Conversion The ‘business as 0.4 historical data 50% 75% 95% 100% usual’ case: 0.3 If technical efficiency does efficiency not increase in 0.2 pace with ‘de- materialisation’ 0.1 The rate of growth slows. 0 1900 1938 1975 2013 2050 Year
  • 51. GDP forecasts “dematerialisation scenarios” ,US 2000-2050 Gross Output 200 The sensitivity of historical data 50% 75% 95% 100% future projections of GDP were 150 assessed, the red line indicates the Index (1900=1) ‘business as usual’ for a fractional 100 decay rate of energy intensity of output –1.2 % per annum and 50 technical efficiency at 1% p.a. 0 1900 1938 1975 2013 2050 Year
  • 52. Historical and forecast GDP for alternative rates of decline of the energy intensity of output, US 1900-2000 120 1.2% per annum 1.3% per annum 100 1.4% per annum 1.5% per annum empirical 80 GDP (1900=1) 60 40 20 0 1950 1975 2000 2025 2050 year
  • 53. Forecast GDP growth rates for three alternative technology scenarios (US 2050). Alternative Technology Scenarios Low Mid High Growth rate f GDP f GDP f GDP Minimum 0.16% -2.97% 0.43% -1.89% 1.11% 1.94% Average 0.40% -1.29% 0.72% 0.38% 1.18% 2.20% Maximum 0.62% 0.92% 0.89% 1.75% 1.23% 2.63% Note the feedback between f growth and GDP growth
  • 54. Historical and forecast technical efficiency of energy conversion, for 3 alternative rates of technical efficiency growth, US 1950-2000. 0.35 0.3 low mid high 0.25 technical efficiency (f) empirical 0.2 0.15 0.1 0.05 0 1950 1975 2000 2025 2050 year
  • 55. Historical and forecast GDP, for 3 alternative rates of technical efficiency growth, US 1950- 2050 70 60 low mid high 50 empirical GDP (1900=1) 40 30 20 10 0 1950 1975 2000 2025 2050 year
  • 56. Conclusions • Travail utile comme facteur de production • Application du 2°loi pour « proxy » de progrès technologique • Fonction LINEX et représentation Systèmes Dynamique permettant – Estimation historique – « substitution dynamique » suite aux progrès – Feedback entre progrès technologique et le quantité et qualité des sources énergétique et l’efficacité d’utilisation