Iccsa 2008 Gotthard Meinel

667 views
598 views

Published on

Third International Workshop on "Geographical Analysis, Urban Modeling, Spatial Statistics"

Published in: Technology, Economy & Finance
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
667
On SlideShare
0
From Embeds
0
Number of Embeds
11
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Iccsa 2008 Gotthard Meinel

  1. 1. High Resolution Analysis of Settlement Structure on Base of Topographical Raster Maps - Method and Implementation Gotthard Meinel Leibniz Institute of Ecological and Regional Development, Dresden/Germany (IOER)
  2. 2. Basic Idea of our Development <ul><li>Program for calculation of settlement area parameters (e.g. density) in high resolution only on base of simple topographic maps </li></ul><ul><li>Such Information needs for applications in planning in mid resolution and also for general geographical research </li></ul><ul><li>Program using later for calculation of settlement development over historical periods </li></ul>
  3. 3. Overview <ul><li>Background information </li></ul><ul><li>Goals of development </li></ul><ul><li>Data using </li></ul><ul><li>Method description </li></ul><ul><li>Implementation SEMENTA® </li></ul><ul><li>Applications </li></ul><ul><li>Outlook </li></ul>
  4. 4. Background for the Development <ul><li>Currently missing information about settlement structure on base of building level </li></ul><ul><li>Currently missing public information about flats and inhabitants on base of building level (data protection!) </li></ul><ul><li>Information needs for planning and decisions of many questions </li></ul><ul><li>Topographical geodata better and better and base for such calculations </li></ul><ul><li>High performance geoprocessing (hard- and software) for nation-wide calculations </li></ul>
  5. 5. Goals of Development <ul><li>Geometric structuring of settlement areas by description of each building and each urban blocks </li></ul><ul><li>Classification of each building and each urban block </li></ul><ul><li>Calculation of building- and block-oriented parameters (e.g. population, structure density, number of apartments) </li></ul><ul><li>Visualization in GIS (e.g. ArcMap) </li></ul><ul><li>Generation of statistical reports </li></ul><ul><li>Spatial disaggregation of low resolution statistical and census data </li></ul>
  6. 6. Problem: Data Access in Germany <ul><li>Data and privacy protection is very strictly! </li></ul><ul><li>Statistic and census data only on municipality level or higher </li></ul><ul><li>Last full census: </li></ul><ul><ul><li>Old federal states: 1987! </li></ul></ul><ul><ul><li>New federal states: 1995! </li></ul></ul><ul><li>Next Census: 2011 (Results not before 2013!) </li></ul><ul><li>Spatial base data partial not public for planners! </li></ul><ul><li>Land use statistic not fine enough (only cadastre base, low resolution, no connection with other statistical data) </li></ul>
  7. 7. Requirements on Database <ul><li>Homogeneous data </li></ul><ul><li>Available for whole Germany </li></ul><ul><ul><li>Established data update (defined update intervals) </li></ul></ul><ul><li>Data available also for historical time slots </li></ul><ul><li>Free or low budget data access for all </li></ul><ul><li>Data must visualize all buildings! </li></ul>
  8. 8. Overview Spatial Base Data (Topographic Geodata) in Germany <ul><li>Vector based (only blocks, non buildings) </li></ul><ul><li>ATKIS DLM25 (1:25 000) </li></ul><ul><li>ATKIS DLM250 (1:250 000) </li></ul><ul><li>ATKIS DLM1000 (1:1 000 000) </li></ul><ul><li>Raster based (with buildings) </li></ul><ul><li>DTK10 (1:10 000) </li></ul><ul><li>DTK25 (1:25 000) </li></ul><ul><li>DTK50 (1:50 000) </li></ul><ul><li>DTK100 (1:100 000) </li></ul><ul><li>Optimum: Topographic geodata base </li></ul><ul><li>Buildings: Topographic Maps scale 1:25 000 (DTK25-V, DTK25, TK25) </li></ul><ul><li>Blocks: ATKIS Basis-DLM </li></ul><ul><li>None using of air photographs (not GISready, to expensive, to large scale) or cadastre data ALK/ALKIS (to expensive, to large scale)! </li></ul>
  9. 9. Process Overview
  10. 10. Ground plan of DTK25-V Map Problem: mix of buildings, streets and scripts
  11. 11. Building extraction
  12. 12. Building mask
  13. 13. Ground plan DTK25-V Building extraction Building indicators Vectorization and measurement Building Extraction and Measurement
  14. 14. Workflow SEMENTA® Generation building layer Data base Calculation building indicators Result: High resolution settlement indicators Calculation block indicators Rule based classification Combining with mean density values
  15. 15. Example Building parameter Building perimeter Peri = 247 m Area of enclosed rectangle (area minimized) AreaRect = 2714 m²
  16. 16. Some selected Building Parameters overall 46 building parameters Variable Building indicator Range of Values AREAH Building area 87…38042 m² PERI Building perimeter 42…5408 m AREARECT Area of enclose rectangle 92…188714 m² RATIOAREA Ratio AREAH/AREARECT 0,12…1,0 RECTRATIO Ratio length/width of enclose rectangle 1…12 RECTLENG Length enclose rectangle 10…843 m RECTWID Width of enclose rectangle (=approximate building width) 6…258 m PATIO Number of inside courts 0…6 MAXWIDTH Maximal building width (=maximal inner circle) 1…69 m MAXDIAM Diameter of enclose circle 8…852 m HR Affiliation probability to class “high rise“ 0/0,5/1 MINBUDIST Minimal building distance in 100m-Buffer 0…100 m MEANBUDIS Mean building distance in 100-Buffer 0…81 m MINBLDIST Minimal building distance to block boundary 0…143 m NUALLJUNC Number of building junction 0…15 PCLLENGTH Length of building basic line 8…1701 m
  17. 17. Building Typology for Classification Level 1 Level 2 Code Name Code Short-Name Name 1 Multi-family house in closed block structure 11 MFH-G Multi-family house, traditional in closed structure 12 MFH-F Multi-family house, (traditional or new) free-standing 2 Multi-family house in open block structure 21 MFH-TZ Multi-family house, traditional in rows 22 MFH-IZ Multi-family house, industrial in rows 23 MFH-HH Tower block >50m 3 Detached, semi-detach. and row houses 31 EZFH Detached and semi-detached houses (EZFH) 32 RH Row houses 33 DH Traditional village-style house 4 Non-residential 41 IG Industry/commerce 42 BFP Strong functional profile such as administration, health/social, education/research, culture etc.
  18. 18. Classification Building extraction and classification Modelling of settlement structure
  19. 19. Building classification - first level Building classification by shape - Evaluation of building style (e.g. line, small) - using only building parameters
  20. 20. Building classification - second level Building classification by type - Evaluation of block parameters (e.g. Density, gap, land use class) - Calculation of more parameters (area part in block)
  21. 21. Block classification (on base on buildings) Block classification - dominant building type determine block type - combination of area- and count dominant principle
  22. 22. Calculation of flat and inhabitant densities <ul><li>Implementation </li></ul><ul><li>Calculation of fix reference densities for inhabitants and flats per sq.m of each building type </li></ul><ul><li>Calculation of fix floor numbers for each building type </li></ul><ul><li>Application </li></ul><ul><li>Choice the right reference density for each building </li></ul><ul><li>Calculation of inhabitants and flats by building footprint and floor number for each building </li></ul><ul><li>Aggregation of inhabitants and flats for a well know statistical unit (e.g. municipality) </li></ul><ul><li>Comparison and calculation of a correction factor </li></ul><ul><li>Correction of inhabitants and flats for each building </li></ul>
  23. 23. Processing Results <ul><li>17 indicators for all urban blocks in study area: </li></ul><ul><li>block type (7 residential and 2 non-residential types) </li></ul><ul><li>number of buildings (total buildings in each block) </li></ul><ul><li>building density (number of buildings per hectare block area) </li></ul><ul><li>total closed area (total of building footprints in block m²) </li></ul><ul><li>footprint density (ratio of total closed space to area of block) </li></ul><ul><li>average number of floors (weighted average) </li></ul><ul><li>total floor space, floor space density </li></ul><ul><li>building volume, density of building volume </li></ul><ul><li>number of flats, flat density </li></ul><ul><li>number of residents, density of population </li></ul>
  24. 24. Overview Statistic Results <ul><li>Whole area statistics (e.g. community) </li></ul><ul><li>Number of blocks </li></ul><ul><li>Block area (ha) </li></ul><ul><li>Number of buildings </li></ul><ul><li>Total building footprint (ha) </li></ul><ul><li>Density of building footprint(ha/ha) </li></ul><ul><li>Number of Inhabitants </li></ul><ul><li>Number of flats </li></ul><ul><li>Building volume (ha³) </li></ul><ul><li>Block statistics (for each block type) </li></ul><ul><li>Inhabitants, Density of Inhabitants (1/ha) </li></ul><ul><li>Number of flats, Flat density (1/ha) </li></ul><ul><li>Number of Buildings, Density of Buildings (1/ha) </li></ul><ul><li>Total building footprint (m²), Density of building footprints (m²/m²) </li></ul><ul><li>Building volume (m³), Density of building volume (m³/m²) </li></ul><ul><li>Floor space (m²), Density of floor space (m²/m²) </li></ul><ul><li>Average number of floors </li></ul><ul><li>Building statistic (for each building type) </li></ul><ul><li>Number of inhabitants </li></ul><ul><li>Number of flats </li></ul><ul><li>Building area (m²) </li></ul><ul><li>Building volume (m³) </li></ul><ul><li>Each Output with mean, standard deviation, minimum and maximum in cvs-format </li></ul>
  25. 25. Results (inhabitants density for city Bonn) Calculation Reference
  26. 26. Program Implementation Se ttle mentA nalyzer - SEMENTA® (patent procedure is running)
  27. 27. Requirements for Program Implementation <ul><li>Only using of basic topographic geodata sets </li></ul><ul><li>Operational utilization for whole countries </li></ul><ul><li>Usability for cities and rural areas </li></ul><ul><li>Objective results </li></ul><ul><li>All results on base of buildings </li></ul><ul><li>Completely automated procedure </li></ul><ul><li>Easy-to-use graphical user interface in GIS </li></ul><ul><li>Potential for monitoring </li></ul>
  28. 28. ArcGIS Extension SEMENTA ®
  29. 29. Program modules of SEMENTA® <ul><li>Choice of examination area </li></ul><ul><li>Module 1: Building extraction </li></ul><ul><li>Module 2: Indicator calculation </li></ul><ul><li>Module 3: Building classification </li></ul><ul><li>Module 4: Block classification </li></ul><ul><li>Module 5: Estimation of density values </li></ul><ul><li>Module 6: Further structure indicators </li></ul>
  30. 30. Parameter settings in SEMENTA® choice input data output vector or raster regional density parameters
  31. 31. Status information in SEMENTA®
  32. 32. Implementation of SEMENTA® <ul><li>Intuitively designed user interface </li></ul><ul><li>Realize as a GIS-Functionality (AML-Script in ArcInfo) </li></ul><ul><li>Realize of the image processing steps in VisualBasic.NET under using of Runtime Library of HALCON </li></ul><ul><li>User Interface in C# under using of ArcObjects-Libraries </li></ul><ul><li>User Interface -> Extension for ArcGIS </li></ul><ul><li>Implementation as Toolba r </li></ul>
  33. 33. Output of SEMENTA® ArcMap-Project with 17 Layers and intelligent cartographic visualization (predefined legend)
  34. 34. Results for Dresden – Building Types
  35. 35. Results for Dresden - Footprint Density
  36. 36. Result for Dresden – Flat Density (100m-Raster) Dresden - Center
  37. 37. Potential – 3D-Visualization Example Dresden-Striesen
  38. 38. Application Fields of SEMENTA® <ul><li>Planning </li></ul><ul><ul><li>City-, regional- und state planning </li></ul></ul><ul><ul><li>Planning of public infra structure (e.g. technical infrastructure: gas, electric power, water, telecommunication, social infrastructure) </li></ul></ul><ul><ul><li>Outline of settlement areas (city kernel, suburban, outskirts) on base of objective criteria's </li></ul></ul><ul><ul><li>Civil protection, risk mapping and catastrophe management </li></ul></ul><ul><ul><li>Transport system planning (emission of noise and air pollution for inhabitants, planning of public transport system) </li></ul></ul><ul><li>Statistic </li></ul><ul><ul><li>Disaggregation of statistical values (e.g. inhabitants, land use, buildings, residential areas) and there visualization </li></ul></ul><ul><li>Geomarketing </li></ul><ul><ul><li>location planning, customer distribution </li></ul></ul>
  39. 39. Problems <ul><li>Building extraction (map generalization, scanner digitalization, loss buildings by cartographic release) </li></ul><ul><li>Building classification (non residential using, mixing use of buildings, vacancy) </li></ul><ul><li>Floor number (classification only on form, neighbourhood and building ground area) </li></ul><ul><li>Using of general values of reference density </li></ul>
  40. 40. Further Developments <ul><li>Better results by better input data (DTK25) </li></ul><ul><li>Optimization of building and block indicators </li></ul><ul><li>Refinement of building and block classification scheme (better differentiation of floor numbers and building types in rural areas) </li></ul><ul><li>Improve building and block classification (e.g. neuronal networks) </li></ul><ul><li>Regionalization of building reference density values (inhabitants and flats) </li></ul><ul><li>Increase of performance </li></ul><ul><li>Handling with historical maps -> monitoring of settlement development </li></ul>
  41. 41. Outlook <ul><li>Using SEMENTA® in a Germany-wide monitor for settlement and open space development </li></ul><ul><li>Better information for planning and evaluation of the sustainability of land use development </li></ul><ul><li>Special SEMENTA® tools for applications in transport system, infrastructure, risk maps and catastrophe management </li></ul><ul><li>SEMENTA-Adaption on maps from other countries -> international utilization </li></ul><ul><li>Example for combining image processing of raster maps , statistical analysis, geoprocessing and user friendly implementation </li></ul>
  42. 42. <ul><li>Thanks for your attention! </li></ul><ul><li>Contact: G.Meinel@ioer.de </li></ul>
  43. 43. Ground plan DTK25-V Map Problem: mix of buildings, streets and scripts
  44. 44. Results for Dresden - Residential Density
  45. 45. Results for Dresden – Block Types
  46. 46. Overview Workflow <ul><li>Extraction of Buildings </li></ul><ul><ul><li>mask settlement areas (ATKIS-Classification 2111 (Residential), 2113 (Mixing use), 2114 (functional using area) und 2112 (Industrial/Commercial) </li></ul></ul><ul><ul><li>Elimination of not buildings </li></ul></ul><ul><ul><li>Vectorization of buildings </li></ul></ul><ul><li>Classification of buildings and settlement blocks </li></ul><ul><ul><li>Description of singe Buildings by building indicators </li></ul></ul><ul><ul><li>Description of blocks by block indicators </li></ul></ul><ul><ul><li>Classification of building type by rule network </li></ul></ul><ul><ul><li>Classification of block type by rule network </li></ul></ul><ul><li>Calculation of settlement indicators </li></ul><ul><ul><li>Estimation of building inhabitant over building area, building type and multiplication with mean density of inhabitants in thus building type </li></ul></ul><ul><ul><li>Aggregation of inhabitants for whole community </li></ul></ul><ul><ul><li>Comparison with statistic values </li></ul></ul><ul><ul><li>Correction of inhabitants in all buildings </li></ul></ul><ul><li>4. Visualization of results on base of block or raster geometry </li></ul>
  47. 47. Ex-post Analysis (change detection) Time slot t 1-x Time slot t 1 Indicator (t 1 – t 1-x ) Value Settlement area 2,1 Hectare Number new buildings 11 Building demolition 1 Floor area 6.400 m² … inside development 2.600 m² … outside development 3.800 m² Fraction Inside dev. 40 % Density new Buildings 18 WE/ha
  48. 48. Empirisch ermittelte Dichtereferenz Abb. 7: Gebäudegrundfläche pro Einwohner (Dresden)
  49. 49. Ergebnis Dresden - Einwohnerdichte (100m-Rasterzellen) Dresden - Zentrum
  50. 50. Ergebnisbeispiel Einwohnerdichte (Dresden) Vorhersage Referenz
  51. 51. Ergebnisbeispiel Einwohnerdichte (Bonn) Vorhersage Referenz
  52. 52. Comparison DTK25-V (Old Graphic) andDTK25 (New Graphic) DTK25-V (old) DTK25 (new)
  53. 53. Failure Building Footprint (DTK25-V) Examples for form and area generalization in DTK25-V (red) in comparison with reference DSK (blue)
  54. 54. Topicality of DTK25-V

×