Lymphatic drainage of head & neck


Published on

lymphatic drainage of head.

Published in: Health & Medicine, Technology
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Lymphatic drainage of head & neck

  2. 2. CONTENTS 2  Introduction  History of lymphatic system  Development of lymphatic system  Lymph  Lymph node  Lymph nodes of head and neck  Examination on neck nodes  Cervical lymphadenopathy  Refrences
  3. 3. INTRODUCTION 3  Lymphatic system consist of fluid called LYMPH  DEFINITION:Transparent, slightly yellowish liquid of alkaline reaction found in lymphatic vessel and derived from tissue fluid  Lymphatic system is absent in: -C.N.S. -Cornea -Superficial layer of skin -bones -alveoli of lung
  4. 4. HISTORY OF LYMPH DISCOVERY AND LYMPHATIC DRAINAGE 4  In 1650,John Paquet-cysterna chyli  In 1962,Gaspard Asseli -milky veins  Olauf Rudbeck-first person to describe the lymphatic system  Alexander of winiwater-protocol for draining lymphedenomas  F.D.Millard -diagnostic importance by palpating lymphatic gland  EmilVodder -technoque of lymphatic dranaige  Brono Chilky-rhythm of lymphatic flow
  5. 5. DEVELOPMENT 5  Starts at 5th week of intrauterine life.  First signs of lymphatic system are seen in the form of a number of endothelium lined lymph sacs
  6. 6. 6 SIX PRIMARY LYMPH SACSARE FORMED. 2 Jugular sacs (right and left)  At the junction of subclavian and anterior cardinal veins. 2 iliac sac (right and left)  At the junction of the iliac and posterior cardinal vein. Retroperitonial sac (Unpaired)  Near the root of the mesentery. Cisterna chyli (unpaired)  Dorsal to retroperitonial sac All the sacs except the cisterna chyli are invaded by connective tissue and lymphocytes and are converted into lymph nodes
  8. 8. 8  Rate of lymph flow: About 120ml of lymph flows into blood 120 ml OF LYMPH 100ml THROUGH THORASIC DUCT 2O ml THROUGH RIGHT LYMPHATIC DUCT
  9. 9. 9  Rate of flow of lymph along the human thoracic duct is from 1-1.5ml/min.  Regulation of the lymph flow mainly depends upon :  Interstitial pressure  Atrial pulsation  Intrathorasic pressure  Muscular massage
  10. 10. FORMATION OF LYMPH 10  Lymph is formed from tissue fluid,anything that increases amount of tissue fluid, will increase the rate of lymph formation  Various mechanisms:  Filteration from plasma normally exceeds resorption leading to net formation of tissue fluid  Increase in interstitial fluid hydrostatic pressure favouring the movement of tissue fluid into lymphatic capillary forming lymph
  11. 11. FUNCTIONS OF THE LYMPH 11  Nutritive  Drainage  Transmission of proteins  Absorption of fats  Defensive
  12. 12. LYMPH MOVEMENT 12  It takes place with the help of:  Contractile skeletal muscle  Presence of valve  Contraction of smooth muscle in large lymphatic trunk  Pressure change in muscle during breathing
  14. 14. 14  Before Lymph is returned to the blood stream, it passes through at least one lymph node and often through several  The Lymph vessels that carry lymph to a lymph node are referred to as afferent & those that transport it away from a node are called efferent vessels
  15. 15. 15
  16. 16. STRUCTURE OF LYMPH NODE 16  Lymph nodes are oval-shaped of bean-shaped structures  Some are as small as a pinhead and others as large as a lima bean  Each lymph node is enclosed by a fibrous capsule  Once lymph enters the node, it "percolates" slowly through the spaces known as sinuses before draining into a single efferent draining vessel.  One-way valves in both the afferent and efferent vessels keep lymph flowing in one direction
  17. 17. 17
  18. 18. 18  Fibrous septa or trabeculae extend from the covering capsule toward the center of the node.  Cortical nodules found within the sinuses along the outer region of the node are separated from each other by these trabeculae.  Each cortical nodule is composed of packed lymphocytes that surround a less dense area called a germinal center.  When an infection is present, germinal centers form and the node begins to release lymphocytes.
  19. 19. 19  Lymphocytes begin their final stages of maturation within the germinal center of the nodule and then are pushed to the more densely packed outer layers as they mature to become antibody-producing plasma cells.  The center or medulla of a lymph node is composed of sinuses and cords.  Both the cortical and medullary sinuses are lined with specialized reticuloendothelial cells (fixed macrophages) which are capable of phagocytosis
  20. 20. 20
  22. 22. CLASSIFICATION 22 Upper horizontal chain of nodes:  Submental  Submandibular  Parotid  Postauricular  Occipital
  23. 23. 23
  24. 24. SUBMENTAL NODES 24  Lie on mylohyoid muscle in the submental triangle  2 to 8 in number  Drainage –afferents come from the chin, middle part of lower lip, anterior gums, anterior floor of mouth and tip of tongue.  Efferents -they go to submandibular and internal jugular chain
  25. 25. 25
  26. 26. SUBMANDIBULAR NODES 26  They lie in submandibular triangle in relation to submandibular gland.  Afferents come from lateral part of the lower lip, upper lip, cheek,nasal vestibule and anterior part of nasal cavity, gums,teeth medial canthus, soft palate, anterior pillar, anterior part of tongue, submandibular and sublingual salivary glands and floor of mouth  Efferents go to internal jugular chain
  27. 27. 27
  28. 28. PAROTID NODES 28  They lie in relation to the parotid salivary gland.  Afferents come from the scalp,pinna, external auditory canal,face,buccal mucosa.  Efferents go to internal jugular or external jugular chain
  29. 29. 29
  30. 30. POST AURICULAR NODES 30  Also called as mastoid nodes  They lie behind the the pinna over the mastoid.  Afferents come from the scalp, posterior surface of pinna and skin of mastoid.  Efferents drain into internal jugular chain
  31. 31. 31
  32. 32. OCCIPITAL NODES 32  They lie at the apex of the posterior triangle  Afferents come from scalp, skin of upper neck.  Efferents drain into upper accessory chain of nodes
  33. 33. 33
  34. 34. 34 Lateral cervical nodes  They include nodes, superficial and deep to sternocleidomastoid muscle and in the posterior triangle.  Superficial external jugular group  Deep group i. Internal jugular chain (upper,middle and lower groups) ii. Spinal accessory chain iii.Transverse cervical chain
  35. 35. 35
  36. 36. LATERAL CERVICAL NODES 36  a) Superficial group – it lies along external jugular vein and drains into internal jugular and transverse cervical nodes  b)Deep group It consists of three chains, the internal jugular, spinal accessory and transverse cervical
  37. 37. 37 Internal jugular chain  Lymph nodes of internal jugular chain lie anterior, lateral and posterior to internal jugular vein.  Upper group (jugulodigastric node) – drains oral cavity, orpharynx, nasopharynx,hypopharynx, larynx and parotid.  Middle group drains hypopharynx, larynx, throid, oral cavity, oropharynx.  Lower jugular group drains larynx, thyroid and cervical oesophagus
  38. 38. 38 Spinal accessory chain  Lies along the spinal accessory nerve. Spinal accessory chain drains the scalp, skin of the neck, the nasopharynx, occipital and postauricular nodes.  Efferents from this chain drain into transverse cervical chain
  39. 39. 39 Transverse cervical chain (supraclavicular nodes)  It lies horizontally, along the trasverse cervical vessels, in thelower part of the posterior triangle.  The medial nodes of the group are called scalene nodes.  Afferents to those nodes come from the accessory chain and also infraclavicular structures,e.g. breast, lung, stomach, colon, ovary and testis
  40. 40. 40
  41. 41. 41 Anterior cervical nodes  Anterior jugular chain  Juxtavisceral chain i. Prelaryngeal ii. Pretracheal iii. Paratracheal
  42. 42. 42
  43. 43. ANTERIOR CERVICAL NODES 43  They lie between the two carotids and below the level of hyoid bone and consist of two chains: (a) Anterior jugular chian  It lies along anterior jugular vein and drains the skin of anterior neck. (b) Juxtavisceral chain  It consists of prelaryngeal,pretracheal and paratracheal nodes (i) Prelaryngeal node (Delphian node)-lies on cricothyroid membrane and drains subgottic region of larynx and pyriform sinuses (ii) Pretracheal nodes lie in front of the trachea, and drain thyroid gland and the trachea.Efferents from these nodes go to paratracheal, lower internal jugular and anterior mediastinal nodes (iii) Paratracheal Nodes – drain the thyroid lobes, subglottic larynx, tracha and cervical oesophagus
  44. 44. 44
  45. 45. 45
  46. 46. CLASSIFICATION OF NECK NODES ACCORDING TO LEVELS 46  Level I Submental (IA) Submandibular (IB)  Level II Upper jugular  Level III middle jugular  Level IV Lower jugular  LevelV Posterior triangle group(Spinal accessory and transverse cervical chains)  LevelVI Prelaryngeal Pretracheal Paratracheal  LevelVII Nodes of upper mediastinum
  47. 47. 47
  48. 48. 48  Level I includes :  IA Submental nodes, which lie in the submental triangle i.e. between right and left anterior bellies of diagastric muscles and the hyoid bone.  IB Submandibular ones, lying between anterior and posterior bellies of diagastric muscle and the body of mandible
  49. 49. 49
  50. 50. 50
  51. 51. 51  Level II – Upper Jugular Nodes  They are located along the upper third of jugular vein I.e. between the skull base above, and the level of hyoid bone (or bifurcation of carotid artery) below
  52. 52. 52
  53. 53. 53  Level III – Middle Jugular Nodes  They are located along the middle third of jugular vein, from the level of hyoid bone above, to the level of upper border of cricoid cartilage
  54. 54. 54
  55. 55. 55  Level IV – Lower Jugular Nodes  They are located along the lower third of jugular vein; from upper border of cricoid cartilage to the clavicle
  56. 56. 56
  57. 57. 57  LevelV – Posterior Cervical Group  They are located in the posterior triangle i.e. between posterior border of sternocleidomastoid(anteriorly), anterior border of trapezius (posteriorly), and the clavicle below.They include lymph nodes of spinal accessary chain,transverse cervical nodes and supraclavicular nodes
  58. 58. 58
  59. 59. 59  LevelVI – Anterior Compartment Nodes  They are located between the medial borders of sternocleidomastoid muscles (or carotid sheaths) on each side, hyoid bone above and superasternal notch below.They include prelaryngeal,pretracheal, paratracheal nodes
  60. 60. 60
  61. 61. 61  LevelVII  They are located below the suprasternal notch and include nodes of the upper mediastinum
  62. 62. EXAMINATION OF NECK NODES 62  Examination of neck nodes is important, particularly in head and neck malignancies and a systematic approach should be followed.  Neck nodes are better palpated while standing at the back of the patient.  Neck is slightly flexed to achieve relaxation of muscles
  63. 63. 63
  64. 64. 64  When a node or nodes are palpable, look for the following points: (i) Location of nodes (ii) Number of nodes (iii) Size – Abnormal Nodes Greater than 1.5 c.m. in jugulo digastric area (level 1,2,3) Greater than 1 c.m. elsewhere. (iv) Consistency. Metastatic nodes are hard;lymphoma nodes are firm and rubbery; hyperplastic nodes are soft. Nodes of metastatic melanoma are also soft. (v) Discrete or matted nodes. (vi)Tenderness. Inflammatory nodes are tender. (vii) Fixity to overlying skin or deeper structures. Mobility should be checked both in the vertical and horizontal planes
  65. 65. 65  The nodes are examined in the following manner so that none is missed. a) Upper horizontal chain. b) External jugular chain c) Internal jugular chain d) Spinal accessory chain e)Transverse cervical chain f) Anterior jugular chain g) Juxtavisceral chain
  66. 66. 66  Submental Nodes Roll the fingers below the chin with patient’s head tilted forwards
  67. 67. 67  Submandibular Nodes Roll your fingers against inner surface of Mandible with patient's head gently tilted towards one side
  68. 68. 68  Parotid (Preauricular) Nodes Roll your finger in front of the ear, against the maxilla
  69. 69. 69  Post auricular (Mastoid Nodes) Roll the fingers behind the ear
  70. 70. 70  Occipital Nodes
  71. 71. 71  Internal jugular chain Examine the upper, middle and lower groups. Many of them lie deep to sternomastoid muscle which may need to be displaced posteriorly
  72. 72. 72  Transverse Cervical Nodes Supraclavicular (Scalene Nodes) Roll your fingers gently behind the clavicles. Instruct the patient to cough or to bear down like they are having a bowel movement. Occasionally an enlarged lymph node may pop up
  74. 74. LYMPHADENITIS AND LYMPHADENOPATHY 74  Lymphadenitis is an infection in the lymph nodes. Lymph nodes are glands that are part of the immune system.They help the body fight infection by filtering germs.They become enlarged when infection is present.  Lymphadenopathy is usually a normal response of the lymph nodes to an infection elsewhere in the body.
  75. 75. 75  Cervical lymphadenopathy may be either an important clue to an underlying disease process or a specific clinical syndrome
  76. 76. CAUSES OF LYMPHADENOPATHY 76 1.Infectious disease A.Viral -Infectious mononucleosis -Infectious hepatitis -Herpes simplex -Rubella -Measle -Hiv B.Bacterial -Cat scratch disease -Brucellosis -Tuberculosis -Atypical mycobacterial infection -Primary and secondary syphilis -Diptheria C. Fungal -Histoplasmosis -Coccidioidomycosis D.Parasitic -Toxoplasmosis -Filiriasis E.Chlamydial -Lymphogranuloma venerum -Trachoma
  77. 77. 77 2.Immunologic disease A.Rheumatoid arthritis B.Systemic lupus erythematous C.Sjogren syndrome D.Drug hypersensitivity E.Mixed connective tissue disease 3.Malignant disease a.Hematological -Hodgkin disease -Non hodgkin disease -Hairy cell leukamia -T-cell lymphoma -Multiple myeloma B.Metastasis -From primary site
  78. 78. 78 4.Lipid storage disease -Gaucher’s disease -niemann-pick disease 5.Endocrine disease -Hyperthyroidism -Adrenal insufficiency -Thyroiditis 6.Other disorder -Sarcoidosis -Lymphomatoid granulomatosis -Kawasaki disease -Histocytosis x -Kikuchi disease
  79. 79. CLINICAL EVALUTION 79 1.Location A.Anatomical site B.Presence of single or multiple nodes C.Presence of localized or disseminated nodes D.Palpable nodes are unilateral or bilateral 2.Consistency A.Firm B.Soft C.Rubbery D.Rock hard E.Movable F.Fixed 3.Size A.<1 cm or >1cm B.If nodes are bilateral,check for symmetry 4.Symptoms A.Symptomatic B.Tender C.Painful D.Associated with systemic symptoms or not
  80. 80. 80  Structures that can be mistaken for enlarged lymph nodes include cystic hygromas, branchial cleft cysts, thyroglossal duct cysts, dental abscesses, dermoid cysts, and tumors of thyroid or neural tissue
  81. 81. CLINICAL STAGING OF CERVICAL NODE 81  Nx : Regional LN cannot be assessed  No :no regional LN metastasis  N1 :metastasis in a single ipsilateral LN <3cm In greatest dimension  N2a :metastsis in single ipsilateral LN >3cm but <6cm in greatest dimension  N2b :metastasis in the multiple ipsilateral LN >6cm in greatest dimension  N2c :metastasis in a bilateral or contralateral LN none >6 cm in greatest dimension  N3 :metastasis in lymphnode >6cm In greatest dimensiom
  82. 82. SYMPTOMS 82  Tenderness, redness or warmth in the area of the lymph node  Fever  Lymph node enlargement  Difficulty in swallowing or breathing
  83. 83. TREATMENT 83  Acetaminophen or ibuprofen may be given for pain  Antibiotics if the cause is due to bacteria.Viral infections do not need antibiotics.  Referral to a dentist if a tooth is abscessed
  84. 84. Antibiotic Therapy of Cervical Lymphadenopathy 84 Suspected Staphylococcus aureus or Group A Beta-hemolytic Streptococcus Infection  For children who do not appear toxic and have no apparent abscess or cellulitis, Oral empiric therapy with cephalexin, oxacillin, or clindamycin  For ill-appearing children who have abscess formation or cellulitis,node aspiration and intravenous therapy with cefazolin, nafcillin or oxacillin, or clindamycin Suspected InfectionWith Anaerobic Bacteria  For children who have cervical lymphadenitis associated with periodontal disease, node aspiration and therapy with penicillin or clindamycin
  85. 85. 85 Suspected Nontuberculous Mycobacteria Infection  Surgical excision of the infected lymph node without antibiotic therapy  For patients in whom surgery is not feasible, a macrolide- containing multidrug antimycobacterial regimen Cat-scratch Disease  Following needle aspiration and PCR diagnosis of Bartonella infection, no antimicrobial therapy in patients who have uncomplicated lymphadenopathy.  Surgical removal of nodes infected with Bartonella frequently results in persistent drainage and poor wound healing. Repeated node aspiration for management of suppurative lymphadenopathy caused by Bartonella infection
  86. 86. REFERENCES 86  C.J.Romanes Cunnighams manual of practical anatomy 15th edition  I.B.SinghText book of anatomy 3rd edition  Singh,Pal.Human embryology 7th edition  B D Chaurasia.Human Anatomy 4th edition vol3  Anand.Human Anatomy for Dental Students 1st edition  Anil Ghom.Textbook of Oral Medicine 1st edition  Shafer.Textbook of Oral Pathology 5th edition  Infectitious diseases Cervical Lymphadenopathy Pediatrics in ReviewVol.21 No.12 December 2000
  87. 87. THANK YOU