Spatially Micro-simulating Consumption (and other things) Ben Anderson
Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </...
Why bother? <ul><li>‘ Applied’ reasons </li></ul><ul><ul><ul><li>Public & private resource allocation </li></ul></ul></ul>...
What are ‘small areas’? <ul><li>Base map </li></ul><ul><li>Parliamentary Constituencies </li></ul><ul><li>Local/Unitary Au...
BUT! <ul><li>Spatial data on people are rare </li></ul><ul><ul><ul><li>Census - down to OA level </li></ul></ul></ul><ul><...
The requirement… <ul><li>A Synthetic Consumption Census </li></ul><ul><ul><ul><li>Small area estimates </li></ul></ul></ul...
Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </...
How does it work? <ul><li>Survey data cases </li></ul>Area 1 in  Region X Area 2 in  Region X If region = X Census ‘constr...
Identifying constraints <ul><li>Two criteria: </li></ul><ul><ul><li>Exist in Census  and  Survey  </li></ul></ul><ul><ul><...
Example I: Time Use <ul><li>ONS 2000 Time Use Survey, EEDA region only </li></ul><ul><li>Stepwise linear regression </li><...
Selecting the constraints… <ul><li>These might work OK at the household level </li></ul><ul><li>These won’t  </li></ul><ul...
Run the model… <ul><li>Survey data cases </li></ul>Area 1 in  Region X Area 2 in  Region X If region = X Census ‘constrain...
The result…
Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </...
Time in Space: Work <ul><li>Simulated ‘work time’ (2001) </li></ul><ul><li>East of England,LSOA </li></ul><ul><li>Validati...
Time in Space - Mass media <ul><li>Simulated  total  ‘mass media’ time (2001) - TV, radio, DVD, video </li></ul><ul><li>Ea...
Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </...
Example: Income Deprivation <ul><li>% households in each LSOA  </li></ul><ul><ul><ul><li>below 60% English median income <...
HHBMI Results 2005 <ul><li>Spatial microsimulation: ONS FRS, Census 2001, LSOA level </li></ul><ul><li>The poorest places ...
HHBMI Results 2005 <ul><li>Spatial microsimulation: ONS FRS, Census 2001, LSOA level </li></ul><ul><li>The poorest places ...
Local income inequality - gini <ul><li>FRS 2005 </li></ul><ul><li>East of England, LSOA </li></ul><ul><li>LSOA gini: </li>...
Local income inequality - results <ul><li>Equivalised household income </li></ul><ul><li>Gini </li></ul>
External Validation Results <ul><li>Spatial microsimulation: ONS FRS, Census 2001, LSOA level </li></ul><ul><li>IMD 2004 i...
But… <ul><li>Spatial microsimulation: ONS FRS, Census 2001, LSOA level </li></ul><ul><li>IMD 2004 income domain score (200...
Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </...
Telephony: 2005/6 <ul><li>R sq = only 10.9% </li></ul><ul><li>Simulated household weekly telephone bill (landlines) (EFS 2...
Mobile Telephony 2005/6 <ul><li>R sq = 26.4% </li></ul><ul><li>Gini - measure of within area inequality </li></ul>
Mobile Telephony 2005/6 <ul><li>R sq = 26.4% </li></ul><ul><li>Gini - measure of within area inequality </li></ul>
Water 2005/6 <ul><li>R sq = 21% </li></ul><ul><li>Simulated household weekly water (EFS 2005/6) </li></ul><ul><li>EEDA, LS...
Water 2005/6 <ul><li>R sq = 21% </li></ul><ul><li>Simulated household weekly water (EFS 2005/6) </li></ul><ul><li>Colchest...
Water Poverty 2005/6 <ul><li>R sq = 21% </li></ul><ul><li>% Household who spend > 3% of income on water  (EFS 2005/6) </li...
Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </...
Household Internet access <ul><li>Simulated % households with internet access (2001-2) </li></ul><ul><li>East of England,L...
Change over time <ul><li>Simulated % households with internet access (2001/2 and 2005/6) </li></ul><ul><li>East of England...
Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </...
What if there was…? <ul><li>100% internet uptake in 2006 </li></ul><ul><li>Change in  mean  expenditure on fixed line tele...
Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </...
<ul><li>Work in progress: </li></ul><ul><ul><ul><li>DCLG </li></ul></ul></ul><ul><ul><ul><ul><li>Income Deprivation </li><...
Future Work <ul><li>Methodological </li></ul><ul><ul><ul><li>Efficiency/scalability of method </li></ul></ul></ul><ul><ul>...
Thank you <ul><li>I have an unfilled WAG/ESRC CASE Studentship! </li></ul><ul><ul><li>Oct 09 start, topped up stipend! </l...
Upcoming SlideShare
Loading in...5
×

Spatially Microsimulating Consumption

556

Published on

Slides from a CRESI Research Seminar, February 2009

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
556
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Transcript of "Spatially Microsimulating Consumption"

    1. 1. Spatially Micro-simulating Consumption (and other things) Ben Anderson
    2. 2. Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </li></ul><ul><li>Expenditure </li></ul><ul><li>‘ Digital exclusion’ </li></ul><ul><li>Where next? </li></ul>
    3. 3. Why bother? <ul><li>‘ Applied’ reasons </li></ul><ul><ul><ul><li>Public & private resource allocation </li></ul></ul></ul><ul><ul><ul><li>Public & private service delivery planning </li></ul></ul></ul><ul><li>‘ Research’ reasons </li></ul><ul><ul><ul><li>‘ small area’ level effects and trends </li></ul></ul></ul><ul><ul><ul><li>Deprivation indices and correlates </li></ul></ul></ul><ul><ul><ul><li>Environmental/ecological correlates </li></ul></ul></ul><ul><ul><ul><li>Local area inequalities and social justice (Runciman) </li></ul></ul></ul><ul><ul><ul><li>Intervention analysis </li></ul></ul></ul><ul><ul><ul><li>Sampling frameworks </li></ul></ul></ul><ul><ul><ul><li>Spatially embedded patterns of consumption </li></ul></ul></ul><ul><ul><ul><li>… ? </li></ul></ul></ul>
    4. 4. What are ‘small areas’? <ul><li>Base map </li></ul><ul><li>Parliamentary Constituencies </li></ul><ul><li>Local/Unitary Authorities </li></ul><ul><li>Wards </li></ul><ul><li>Lower Layer Super Output Areas (LSOAs) </li></ul><ul><li>Output Areas (OAs) </li></ul><ul><li>[Postcodes] </li></ul>
    5. 5. BUT! <ul><li>Spatial data on people are rare </li></ul><ul><ul><ul><li>Census - down to OA level </li></ul></ul></ul><ul><ul><ul><li>Large scale surveys - e.g LFS - district level but restricted access </li></ul></ul></ul><ul><ul><ul><li>Administrative - postcode but restricted access </li></ul></ul></ul><ul><ul><ul><li>Private/commercial - postcode but restricted access </li></ul></ul></ul><ul><li>And the data captured are restricted </li></ul><ul><ul><ul><li>Broad but shallow </li></ul></ul></ul><ul><ul><ul><li>Rarely much on consumption </li></ul></ul></ul><ul><ul><ul><li>And of sometimes uncertain quality </li></ul></ul></ul>
    6. 6. The requirement… <ul><li>A Synthetic Consumption Census </li></ul><ul><ul><ul><li>Small area estimates </li></ul></ul></ul><ul><ul><ul><li>Sociologically interesting phenomena </li></ul></ul></ul><ul><ul><ul><li>Validated where possible </li></ul></ul></ul><ul><li>And what have we got? </li></ul><ul><ul><ul><li>Broad but shallow </li></ul></ul></ul><ul><ul><ul><li>Rarely much on consumption </li></ul></ul></ul><ul><ul><ul><li>And of sometimes uncertain quality </li></ul></ul></ul>
    7. 7. Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </li></ul><ul><li>Expenditure </li></ul><ul><li>‘ Digital Exclusion’ </li></ul><ul><li>Where next? </li></ul>
    8. 8. How does it work? <ul><li>Survey data cases </li></ul>Area 1 in Region X Area 2 in Region X If region = X Census ‘constraint’ tables Weights Iterative proportional fitting Ballas et al (2005)
    9. 9. Identifying constraints <ul><li>Two criteria: </li></ul><ul><ul><li>Exist in Census and Survey </li></ul></ul><ul><ul><li>Good predictors of X in survey </li></ul></ul><ul><li>We need to know </li></ul><ul><ul><ul><li>Which ones make the most difference? </li></ul></ul></ul><ul><ul><ul><li>Which ones co-vary? </li></ul></ul></ul><ul><ul><ul><li>What is the smallest effective set? </li></ul></ul></ul><ul><li>Take microdata (survey) </li></ul><ul><ul><ul><li>Stepwise regression of all possible constraints </li></ul></ul></ul><ul><ul><ul><li>Which ones are best indicators? </li></ul></ul></ul>
    10. 10. Example I: Time Use <ul><li>ONS 2000 Time Use Survey, EEDA region only </li></ul><ul><li>Stepwise linear regression </li></ul><ul><li>Values are standardised coefficients </li></ul><ul><li>Mean household minutes per weekday (adults) </li></ul>
    11. 11. Selecting the constraints… <ul><li>These might work OK at the household level </li></ul><ul><li>These won’t </li></ul><ul><ul><li>Probably need an individual level model </li></ul></ul>
    12. 12. Run the model… <ul><li>Survey data cases </li></ul>Area 1 in Region X Area 2 in Region X If region = X Census ‘constraint’ tables Weights Iterative proportional fitting Ballas et al (2005)
    13. 13. The result…
    14. 14. Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </li></ul><ul><li>Expenditure </li></ul><ul><li>‘ Digital Exclusion’ </li></ul><ul><li>Where next? </li></ul>
    15. 15. Time in Space: Work <ul><li>Simulated ‘work time’ (2001) </li></ul><ul><li>East of England,LSOA </li></ul><ul><li>Validation: </li></ul><ul><ul><li>(Spearman rho = 0.8404, p < 0.001) </li></ul></ul><ul><ul><li>Strong correlation with Census 2001 ‘work time’ </li></ul></ul>
    16. 16. Time in Space - Mass media <ul><li>Simulated total ‘mass media’ time (2001) - TV, radio, DVD, video </li></ul><ul><li>East of England, LSOA </li></ul>
    17. 17. Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </li></ul><ul><li>Expenditure </li></ul><ul><li>‘ Digital Exclusion’ </li></ul><ul><li>Where next? </li></ul>
    18. 18. Example: Income Deprivation <ul><li>% households in each LSOA </li></ul><ul><ul><ul><li>below 60% English median income </li></ul></ul></ul><ul><li>Gross income before housing costs </li></ul><ul><ul><ul><li>No deductions (unlike DWP HHBAI) </li></ul></ul></ul><ul><ul><ul><li>Family Resources Survey (FRS) </li></ul></ul></ul><ul><li>Income is equivalised </li></ul><ul><ul><ul><li>Modified OECD scale </li></ul></ul></ul><ul><ul><ul><li>Controls for large households </li></ul></ul></ul>
    19. 19. HHBMI Results 2005 <ul><li>Spatial microsimulation: ONS FRS, Census 2001, LSOA level </li></ul><ul><li>The poorest places are still urban </li></ul><ul><ul><li>as measured by income </li></ul></ul><ul><li>Rushmoor (Camberley) still up there from 2001 </li></ul><ul><li>Birmingham still at the bottom from 2001 </li></ul>
    20. 20. HHBMI Results 2005 <ul><li>Spatial microsimulation: ONS FRS, Census 2001, LSOA level </li></ul><ul><li>The poorest places are urban </li></ul><ul><ul><li>as measured by income </li></ul></ul><ul><ul><li>Urban heterogeneity </li></ul></ul>
    21. 21. Local income inequality - gini <ul><li>FRS 2005 </li></ul><ul><li>East of England, LSOA </li></ul><ul><li>LSOA gini: </li></ul><ul><ul><li>Mean = .35 (UK = .36 [UN]) </li></ul></ul><ul><li>Rural zones </li></ul><ul><li>Max = Central Cambridge </li></ul><ul><ul><li>(gini = .408, % HHBMI = 22%) </li></ul></ul><ul><li>Min = South East Ipswich </li></ul><ul><ul><li>(gini = .268, %HHBMI = 31.8%) </li></ul></ul>
    22. 22. Local income inequality - results <ul><li>Equivalised household income </li></ul><ul><li>Gini </li></ul>
    23. 23. External Validation Results <ul><li>Spatial microsimulation: ONS FRS, Census 2001, LSOA level </li></ul><ul><li>IMD 2004 income domain score (2001 data) </li></ul><ul><li>Table gives rank order correlation coefficients </li></ul><ul><li>Outliers where IMD income domain score low but % HHBMI high </li></ul><ul><ul><li>areas with many student HRPs </li></ul></ul><ul><ul><li>areas with many pensioner HRPs </li></ul></ul>
    24. 24. But… <ul><li>Spatial microsimulation: ONS FRS, Census 2001, LSOA level </li></ul><ul><li>IMD 2004 income domain score (2001 data) </li></ul><ul><li>Spearman rank correlation cut by ONS rural/urban classification </li></ul>
    25. 25. Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </li></ul><ul><li>Expenditure </li></ul><ul><li>‘ Digital Exclusion’ </li></ul><ul><li>Where next? </li></ul>
    26. 26. Telephony: 2005/6 <ul><li>R sq = only 10.9% </li></ul><ul><li>Simulated household weekly telephone bill (landlines) (EFS 2005/6) </li></ul><ul><li>EEDA, LSOA level </li></ul><ul><li>Ward level comparison with BT billing data (EEDA, Ward level) </li></ul><ul><li>Spearman rho = 0.7796, p < 0.001 </li></ul>
    27. 27. Mobile Telephony 2005/6 <ul><li>R sq = 26.4% </li></ul><ul><li>Gini - measure of within area inequality </li></ul>
    28. 28. Mobile Telephony 2005/6 <ul><li>R sq = 26.4% </li></ul><ul><li>Gini - measure of within area inequality </li></ul>
    29. 29. Water 2005/6 <ul><li>R sq = 21% </li></ul><ul><li>Simulated household weekly water (EFS 2005/6) </li></ul><ul><li>EEDA, LSOA level </li></ul>
    30. 30. Water 2005/6 <ul><li>R sq = 21% </li></ul><ul><li>Simulated household weekly water (EFS 2005/6) </li></ul><ul><li>Colchester, OA level </li></ul>
    31. 31. Water Poverty 2005/6 <ul><li>R sq = 21% </li></ul><ul><li>% Household who spend > 3% of income on water (EFS 2005/6) </li></ul><ul><li>AHC = After Housing Costs income </li></ul><ul><li>EEDA, LSOA level </li></ul><ul><li>Probably needs equivalised income </li></ul><ul><ul><li>to highlight low income / high demand </li></ul></ul>
    32. 32. Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </li></ul><ul><li>Expenditure </li></ul><ul><li>‘ Digital Exclusion’ </li></ul><ul><li>Where next? </li></ul>
    33. 33. Household Internet access <ul><li>Simulated % households with internet access (2001-2) </li></ul><ul><li>East of England,LSOA </li></ul>
    34. 34. Change over time <ul><li>Simulated % households with internet access (2001/2 and 2005/6) </li></ul><ul><li>East of England,LSOA </li></ul>
    35. 35. Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </li></ul><ul><li>Expenditure </li></ul><ul><li>‘ Digital Exclusion’ </li></ul><ul><li>Scenario (what if?) analysis </li></ul><ul><li>Where next? </li></ul>
    36. 36. What if there was…? <ul><li>100% internet uptake in 2006 </li></ul><ul><li>Change in mean expenditure on fixed line telephony </li></ul><ul><li>Change in total expenditure on fixed line telephony </li></ul>
    37. 37. Contents <ul><li>Why bother? </li></ul><ul><li>Method(ological) Summary </li></ul><ul><li>Time </li></ul><ul><li>Income </li></ul><ul><li>Expenditure </li></ul><ul><li>‘ Digital Exclusion’ </li></ul><ul><li>Where next? </li></ul>
    38. 38. <ul><li>Work in progress: </li></ul><ul><ul><ul><li>DCLG </li></ul></ul></ul><ul><ul><ul><ul><li>Income Deprivation </li></ul></ul></ul></ul><ul><ul><ul><li>WAG </li></ul></ul></ul><ul><ul><ul><ul><li>Income deprivation & child poverty </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Digital inclusion ‘indicators’ </li></ul></ul></ul></ul><ul><ul><ul><li>BT </li></ul></ul></ul><ul><ul><ul><ul><li>LSOA level census projection to 2021 </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Household expenditure projections </li></ul></ul></ul></ul><ul><ul><ul><li>DoH </li></ul></ul></ul><ul><ul><ul><ul><li>‘ Healthy Lifestyles’ </li></ul></ul></ul></ul><ul><li>Writing it up! </li></ul>Current Work
    39. 39. Future Work <ul><li>Methodological </li></ul><ul><ul><ul><li>Efficiency/scalability of method </li></ul></ul></ul><ul><ul><ul><li>Indicators of ‘error’ or ‘confidence’ </li></ul></ul></ul><ul><ul><ul><li>Contemporary spatial data? </li></ul></ul></ul><ul><li>Substantive </li></ul><ul><ul><ul><li>Intervention baselines </li></ul></ul></ul><ul><ul><ul><ul><li>Next generation broadband and e-commerce? </li></ul></ul></ul></ul><ul><ul><ul><ul><li>UK Online centres? </li></ul></ul></ul></ul><ul><ul><ul><li>Health behaviours </li></ul></ul></ul><ul><ul><ul><li>Water, water, water! </li></ul></ul></ul><ul><ul><ul><ul><li>(and energy) </li></ul></ul></ul></ul><ul><ul><ul><li>Relative deprivation models </li></ul></ul></ul><ul><li>More writing!! </li></ul>
    40. 40. Thank you <ul><li>I have an unfilled WAG/ESRC CASE Studentship! </li></ul><ul><ul><li>Oct 09 start, topped up stipend! </li></ul></ul><ul><li>Contact: </li></ul><ul><ul><li>[email_address] </li></ul></ul><ul><li>Further details: </li></ul><ul><ul><li>http:// istr.essex.ac.uk/tasc/getPubsByTag.php?tag =spatial microsimulation </li></ul></ul>

    ×