Open Recommender

1,352 views
1,302 views

Published on

OpenRecommender is an open source project to create the world's most reliable and scalable Recommendation Engine software for filtering and suggesting content & services of all types, in the right place, at the right time.

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,352
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
25
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Sharing Things people like
  • Lean Forward (aka Producer)Lean Back (aka Consumer)
  • https://www.math.duke.edu/education/ccp/materials/linalg/rotation/rotm3.html
  • Open Recommender

    1. 1. OpenRecommenderOpenRecommender A Cross-Platform Semantic Recommendation Engine Bryan Copeland, BCmoney MobileTV
    2. 2. SW Adoption (Major Issues)SW Adoption (Major Issues) Data linkage & integration Vocabulary selection Service & Content discovery Search-equivalent paradigm
    3. 3. RecommendationsRecommendations  What is a recommendation?  Interesting video (Video + Discussion)  Shocking News story (News + Text + Organization)  Delicious recipe/restaurant (Food + Text/Location)  Favorite song/band (Person + Organization/Audio)  “My shows” (Video + Person + Event)  Medical Dataset to query (Species + Text + License)  Medical treatment (Species + Person + Text)  Legal services (Person + Organization + Profession + Event)  I like it, so you must like it too!
    4. 4. TaxonomyTaxonomy  Audio  Celestial  Code  Device  Discussion  Event  Food  Image  License Location News Organization Person Profession Species Text Video
    5. 5. SchemaSchema { "recommendations": [ { "recommendation" : { "title":"", "image":"", "link":"", "description":"“ } } ] } <recommendations> <recommendation> <title><title> <image></image> <link></link> <description></description> … </recommendation> … <recommendations> XML JSON
    6. 6. SemanticsSemantics RDF <foaf:Person rdf:ID=" http://facebook.com/bcmoney"> <foaf:name> Bryan Copeland </foaf:name> <rec:recommends> <dc:title lang="ja">Akunin</dc:title> <dc:title lang="en">Villain</dc:title> <dc:image>...</dc:image> <dc:source> http://www.akunin.jp/ </dc:source> <dc:description>…</dc:description> </rec:recommends> </foaf:Person> n3 @prefix foaf: <http://xmlns.com/foaf/0.1/>. @prefix dc: <http://purl.org/dc/elements/1.1/>. @prefix owl: <http://www.w3.org/2002/07/owl#>. @prefix rec: <http://openrecommender.org/schema/>. <http://facebook.com/bcmoney> foaf:name “Bryan Copeland"; dc:publisher “Facebook“; rec:recommends <http://www.akunin.jp/>. <http://www.akunin.jp/> dc:Title "Akunin"; dc:Title “Villain"; owl:sameAs <http://imdb.com/title/tt1542840/>; owl:sameAs <http://freebase.com/view/m/0dlh7sg> .
    7. 7. OntologyOntology Mobile Phones Mobile TV  Broadcast Type  One-seg  DMB  IPTV  XMLTV Dublin Core FOAF Music
    8. 8. ArchetypesArchetypes Lean Forward Researcher Techie Channel Surfer Armchair Activist Super Fan Party organizer Bargain hunter Lean Back Busy Executive Business Owner Couch Potato Concerned Parent Jock/Cheerleader Party hopper Pack rat
    9. 9. AlgorithmsAlgorithms Machine Learning (Stats) Non-negative matrix factorization Single Value Decomposition LaBarrie Theory (EQ) Collaborative Filtering (CF) Natural Language Processing (NLP) Fuzzy String Matching “Intelligent” Randomization
    10. 10. RelevanceRelevance Ranking factor plots performance of algorithms for each Archetype against each Semantic type from Taxonomy P x Q x R matrix Height = 10 (# of algorithms) Width = 500 (# of users) Depth = 17 (# of categories in Taxonomy)
    11. 11. ExampleExample User 1 User 2 … User N CF 0.014 0.173 ML 0.158 0.092 … A(n) Audio … Video P Q R P =
    12. 12. Cross-Platform?Cross-Platform?  Platform-specific plugins/apps:  WordPress  MediaWiki  Firefox, IE, Safari, Opera browser plugin  iPhone  Blackberry  Android  Java Desktop client?  Web Service API (w/ SPARQL endpoint)  PHP, AJAX, HTML5 toolkits  W3C Widgets
    13. 13. Looking For…Looking For… Code Contributors Sponsors (contest) Project Champion (industry) Collaboration, Feedback
    14. 14. QuestionsQuestions Recommendations replacement for Search? How can Recommendation Engines (like Search Engines) be gamed? Ideas on ways to prevent attacks? Privacy issues? Others?

    ×