Lung and Pleural Ultrasonography Ultrasound Guided Vascular AccessGoal-Directed EchocardiographyMeasures of Volume Respons...
“It is crucial that chest physicians take the lead in advocating for ultrasound to become part of our daily practice, crea...
Echogenicity<br /><ul><li>The more ultrasound waves reflected back, the brighter the image
Hyperechoic (bright echo)
Air
Diaphragm
Periostium
Isoechoic/echogenic
Liver
Kidney
Muscle
Hypoechoic (dark echo)
Fluid
Blood
Fat</li></ul>Bassel Ericsoussi, MD<br />3<br />
Bassel Ericsoussi, MD<br />4<br />
Modes<br />B-Mode<br />Traditional real-time, cross-sectional scanning mode<br />M-Mode<br />One dimensional display of mo...
	Image Artifacts<br />Acoustic enhancement<br />Increase amplitude caused by intervening structures with low attenuation<b...
Artifacts cont.<br />A lines <br />“Reverberation” artifacts<br />Horizontal lines parallel to the pleural line<br />Dista...
Bassel Ericsoussi, MD<br />8<br />
Artifacts cont. B lines/Comet-Tail Artifacts <br /><ul><li>Arise from pleural line, extend to the bottom of the screen
Move with lung sliding
Efface A lines at their point of intersection
Normally seen in the lower lateral lung zones (3-4 lines)
lower lung zone interstitial markings are normal
Hence, a few Comet Tails in this area are also normal
Correlate with the alveolar interstitial pattern  (correlate with the presence of extravascular lung water )on CXR or ches...
7 mm apart B lines: intra-lobular septa process
Diffuse interstitial fibrosis
< 3mm apart “closely spaced” B lines: intra-alveolar  process
Pulmonary edema  (smooth pleura) or ARDS (rough pleura)</li></ul>Bassel Ericsoussi, MD<br />9<br />
Bassel Ericsoussi, MD<br />10<br />
Explanation Of The Formation Of The B-lines (Comet-tail Artifact). <br /><ul><li> When the US beam meets the thickened int...
 Each reflection of the beam is displayed on the screen behindthe previous reflection.
 A distance of about 1 mm separates eachreflection. </li></ul>11<br />Bassel Ericsoussi, MD<br />
Normal Lung<br />few Comet Tails in the lower lung zone<br />Acute pulmonary edema closely spaced comet-tail artifacts<br ...
Artifacts cont.<br />E-lines<br />Similar to B lines but Arise from the chest wall, not from the pleural line<br />Vertica...
Artifact cont.<br />Z line artifacts<br />Similar to B lines arise from the pleural line <br />Fade away vertically, do no...
Artifacts cont.<br />Mirror image<br />Results from the beam encountering a bright reflector (diaphragm)<br />Produces a f...
Probes<br />Cardiac<br />Abdominal<br />Endocavity<br />Vascular<br />Lungs<br />2.5-3.5 MHz<br />3.5-5.0 MHz<br />5.0-7.5...
7.5-10 MHz<br />Superficial  structures (vessels)<br />1.0-5.0 MHz<br />Cardiac<br />Lung<br />Abdomen<br />Bassel Ericsou...
Penetration vs. Resolution<br />Higher frequency, less penetration but better resolution<br />Good for vessels “vascular/l...
Knobology<br />Patient ID<br />Mode<br />Depth<br />Gain<br />THI<br />Save <br />Annotations<br />Bassel Ericsoussi, MD<b...
Lung Ultrasonography Compared to Chest Radiography<br />Lung ultrasonography is superior to supine portable chest radiogra...
Equipment Requirement<br />3.5-5.0 MHz transducer<br />Cardiac probe is very effective<br />Has small footprint to fit int...
Technique<br />Pt supine with arms abducted as needed, lateral decubitus for full examination<br />Transducer in longitudi...
Ultrasonographic Findings in Normal Lung<br />Sliding lung<br />Lung pulse<br />Pleural Line<br />A lines<br />B lines/Com...
Sliding Lung Sign<br />Represents the movement of visceral against parietal pleura during the respiratory cycle<br />Ident...
Pleural Line<br /><ul><li>Located 0.5 cm below the rib line
 Its visible length between two ribs in the longitudinal scan is approximately 2 cm
The upper rib, pleural line, and lower rib (vertical arrows) outline a characteristic pattern called the bat sign</li></ul...
A Lines<br />“Reverberation” artifacts<br />Horizontal lines parallel to the pleural line.<br />Separated by regular inter...
Bassel Ericsoussi, MD<br />27<br />
Bassel Ericsoussi, MD<br />28<br />
B-lines/Comet-Tail ArtifactsLung Rockets<br /><ul><li>Arise from pleural line, extend to the bottom of the screen
Move with lung sliding
Efface A lines at their point of intersection
Normally seen in the lower lateral lung zones (3-4 lines)
lower lung zone interstitial markings are normal.
Hence, a few Comet Tails in this area are also normal
Correlate with the alveolar interstitial pattern  (correlate with the presence of extravascular lung water )on CXR or ches...
7 mm apart B lines: intra-lobular septa process
Diffuse interstitial fibrosis
< 3mm apart “closely spaced” B lines: intra-alveolar  process
Pulmonary edema  (smooth pleura) or ARDS (rough pleura)</li></ul>Bassel Ericsoussi, MD<br />29<br />
Normal Lung<br />few Comet Tails in the lower lung zone<br />Acute pulmonary edema closely spaced comet-tail artifacts<br ...
E-lines<br />Generated by subcutaneous emphysema<br />Vertical laser-like lines that reach the edge of the screen <br />Si...
Using Ultrasound to Evaluate for a Pneumothorax<br />Probe placement<br />On the anterior chest in the 3-4th intercostal s...
Bassel Ericsoussi, MD<br />33<br />
Using Ultrasound to Evaluate for a Pneumothorax<br />A high frequency vascular probe but a curvilinear abdominal probe wil...
Using Ultrasound to Evaluate for a Pneumothorax<br />http://www.sonoguide.com/FAST_Video7.html (Shows normal “lung sliding...
Using Ultrasound to Evaluate for a Pneumothorax<br />The presence of sliding lung rules out PTX with 100% certainty at the...
Using Ultrasound to Evaluate for a PneumothoraxB-mode vs. M-modeNormal Lung<br /><ul><li>B-mode: sliding lung
M-mode: Seashore Sign
Horizontal lines (“waves”) representing the static chest wall
granular pattern (“sand”) representing the dynamic artifacts beyond the pleural line</li></ul>Bassel Ericsoussi, MD<br />3...
Bassel Ericsoussi, MD<br />38<br />
SEASHORE SIGN<br />Bassel Ericsoussi, MD<br />39<br />
Using Ultrasound to Evaluate for a PneumothoraxB-mode vs. M-modePTX<br />B-mode: Lack of sliding lung<br />M-mode: Stratos...
Bassel Ericsoussi, MD<br />41<br />
STRATOSPHERE SIGN<br />Bassel Ericsoussi, MD<br />42<br />
Using Ultrasound to Evaluate for a PneumothoraxB-mode vs. M-modeLung Point<br />M-mode: Lung Point Sign<br />appear at the...
Using Ultrasound to Evaluate for a Pneumothorax<br />Identifying the lung point is 100% diagnostic for PTX<br />Found at t...
Using Ultrasound to Evaluate for a Pneumothorax<br />Identifying the lung point is 100% diagnostic for PTX<br />Absence of...
Using Ultrasound to Evaluate for a Pneumothorax<br />American Academy of Emergency Medicine : Chan SSW et al Acad Emerg Me...
Using Ultrasound to Evaluate for a Pneumothorax<br />http://www.youtube.com/watch?v=fntJ7GLjCSU&feature=PlayList&p=B9E542E...
Ultrasound Guided Vascular Access<br />Why not identify the target vessel with ultrasonography, instead of using landmark<...
General Reference<br />Bassel Ericsoussi, MD<br />49<br />
Common Arguments Against US Guidance<br />I don’t need it<br />It complicates my set-up routine<br />I will lose skill at ...
The Evidence<br />US guidance increases success rate and reduces complication rate<br />Time saving<br />Comfort of the pa...
Anatomic Variation in IJ<br />Significant anatomic variation in IJ position and size is common<br />Real time US-guidance ...
Bassel Ericsoussi, MD<br />53<br />
Equipments<br /><ul><li>Higher frequency, less penetration but better resolution
Good for vessels “vascular/linear probe” 7.5 Mhz
Color doppler is desirable but not required</li></ul>Bassel Ericsoussi, MD<br />54<br />7.5-10 MHz<br />Superficial  struc...
Some Suggestions<br />Always use a sterile transducer cover<br />Chlorhexidine is an excellent US coupling medium<br />Pos...
Real Time vs. Marking<br />Why use anything but real-time guidance?<br />Real-time guidance is superior to “mark and stick...
Technique: IJ Position<br /><ul><li>Pre-scan to plan approach:
Check sliding lung for later comparison post insertion
Prepare the pt as per routine with sterile transducer cover and properly positioned machine
Obtain transverse view of the IJ
Examine the entire vessel: size, visible clot, stenosis, compressibility</li></ul>Bassel Ericsoussi, MD<br />57<br />
Technique: IJ Position<br /><ul><li>Identify best site
Hold transducer perpendicular in transverse section
Vessel localized to exact center of the transducer
Needle insertion 0.5-1.0 cm from transducer at appropriate angle
Advance needle watching for tissue movement, needle identification and vessel compression by the needle</li></ul>Bassel Er...
Problems<br />Avoid site of insertion that places the carotid deep to IJ<br />Avoid pressure that will collapse vessel<br ...
Transverse view:<br />The IJ vein anterior and lateral to the carotid artery<br />Significant overlap of the artery <br />...
For the Safety Conscious<br />Visualize the wire in longitudinal view before dilatation<br />Check for sliding lung post-p...
Subclavian Venous Access<br /><ul><li>Ignore all previous landmark experience
Go lateral and stay away from the clavicle
Locate sc vein in transverse plane
Rotate the transducer to longitudinal view of the vein
Advance needle along midline long axis of the transducer
Do not proceed unless the needle is clearly in US imaging plane!</li></ul>Bassel Ericsoussi, MD<br />62<br />
Bassel Ericsoussi, MD<br />63<br />
Bassel Ericsoussi, MD<br />64<br />
Ultrasound Guided Central Venous Catheter Placement<br />Bassel Ericsoussi, MD<br />65<br />http://www.youtube.com/watch?v...
Placement of an Arterial Line<br />The placement of arterial lines is an important skill for physicians to master as they ...
Placement of an Arterial LineIndications<br />Patients with hemodynamic instability <br />Patients on vasoactive medicatio...
Placement of an Arterial Line Contraindications<br />Coagulopathy<br />Infection of the insertion site<br />Scar tissue in...
Placement of an Arterial Line Selecting the Site<br />Bassel Ericsoussi, MD<br />70<br />
How to Verify a Collateral Circulation to the Hand: “Allen Test”<br /><ul><li>Somewhat controversial
It may give some qualitative assessment of collateral perfusion
Allen Test
Upcoming SlideShare
Loading in …5
×

Lung and Pleural Ultrasonography - Ultrasound Guided Vascular Access - Goal Directed Echocardiography - Measures of Volume Responsiveness

6,933 views
6,730 views

Published on

Lung and Pleural Ultrasonography
Ultrasound Guided Vascular Access
Goal Directed Echocardiography
Measures of Volume Responsiveness

4 Comments
24 Likes
Statistics
Notes
No Downloads
Views
Total views
6,933
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
3
Comments
4
Likes
24
Embeds 0
No embeds

No notes for slide

Lung and Pleural Ultrasonography - Ultrasound Guided Vascular Access - Goal Directed Echocardiography - Measures of Volume Responsiveness

  1. 1. Lung and Pleural Ultrasonography Ultrasound Guided Vascular AccessGoal-Directed EchocardiographyMeasures of Volume Responsiveness Fellows Introductory Lecture<br />Bassel Ericsoussi, MD<br />Pulmonary and Critical Care Fellow<br />University of Illinois Medical Center at Chicago<br />1<br />Bassel Ericsoussi, MD<br />
  2. 2. “It is crucial that chest physicians take the lead in advocating for ultrasound to become part of our daily practice, create educational opportunities for members of our societies, and incorporate ultrasound training in our fellowship programs.”<br />Dr. David Feller-Kopman<br />Bassel Ericsoussi, MD<br />2<br />
  3. 3. Echogenicity<br /><ul><li>The more ultrasound waves reflected back, the brighter the image
  4. 4. Hyperechoic (bright echo)
  5. 5. Air
  6. 6. Diaphragm
  7. 7. Periostium
  8. 8. Isoechoic/echogenic
  9. 9. Liver
  10. 10. Kidney
  11. 11. Muscle
  12. 12. Hypoechoic (dark echo)
  13. 13. Fluid
  14. 14. Blood
  15. 15. Fat</li></ul>Bassel Ericsoussi, MD<br />3<br />
  16. 16. Bassel Ericsoussi, MD<br />4<br />
  17. 17. Modes<br />B-Mode<br />Traditional real-time, cross-sectional scanning mode<br />M-Mode<br />One dimensional display of motion<br />Bassel Ericsoussi, MD<br />5<br />
  18. 18. Image Artifacts<br />Acoustic enhancement<br />Increase amplitude caused by intervening structures with low attenuation<br />Acoustic shadowing<br />Reduced amplitude caused by intervening structures with high attenuation<br />Bassel Ericsoussi, MD<br />6<br />
  19. 19. Artifacts cont.<br />A lines <br />“Reverberation” artifacts<br />Horizontal lines parallel to the pleural line<br />Distance between A-lines is equal to, or a multiple of, the distance between the skin to the pleural line <br />Seen in normal parenchyma<br />A lines w/o lung sliding<br />Search for PTX<br />Bassel Ericsoussi, MD<br />7<br />
  20. 20. Bassel Ericsoussi, MD<br />8<br />
  21. 21. Artifacts cont. B lines/Comet-Tail Artifacts <br /><ul><li>Arise from pleural line, extend to the bottom of the screen
  22. 22. Move with lung sliding
  23. 23. Efface A lines at their point of intersection
  24. 24. Normally seen in the lower lateral lung zones (3-4 lines)
  25. 25. lower lung zone interstitial markings are normal
  26. 26. Hence, a few Comet Tails in this area are also normal
  27. 27. Correlate with the alveolar interstitial pattern (correlate with the presence of extravascular lung water )on CXR or chest/CT
  28. 28. 7 mm apart B lines: intra-lobular septa process
  29. 29. Diffuse interstitial fibrosis
  30. 30. < 3mm apart “closely spaced” B lines: intra-alveolar process
  31. 31. Pulmonary edema (smooth pleura) or ARDS (rough pleura)</li></ul>Bassel Ericsoussi, MD<br />9<br />
  32. 32. Bassel Ericsoussi, MD<br />10<br />
  33. 33. Explanation Of The Formation Of The B-lines (Comet-tail Artifact). <br /><ul><li> When the US beam meets the thickened interstitial area, it reflects resulting in an artifact composed of all the micro-reflections.
  34. 34. Each reflection of the beam is displayed on the screen behindthe previous reflection.
  35. 35. A distance of about 1 mm separates eachreflection. </li></ul>11<br />Bassel Ericsoussi, MD<br />
  36. 36. Normal Lung<br />few Comet Tails in the lower lung zone<br />Acute pulmonary edema closely spaced comet-tail artifacts<br />Diffuse interstitial fibrosis comet-tail artifacts are 7 mm apart<br />Bassel Ericsoussi, MD<br />12<br />
  37. 37. Artifacts cont.<br />E-lines<br />Similar to B lines but Arise from the chest wall, not from the pleural line<br />Vertical laser-like lines that reach the edge of the screen <br />Generated by subcutaneous emphysema<br />Bassel Ericsoussi, MD<br />13<br />
  38. 38. Artifact cont.<br />Z line artifacts<br />Similar to B lines arise from the pleural line <br />Fade away vertically, do not reach the edge of the screen<br />Do not erase the A-lines<br />Do not accompany the lung sliding <br />Does not have a pathologic meaning<br />Lichtenstein et al. The comet tail artifact: an ultrasound sign of alveolar-interstitial syndrome. <br />Am J Respir Crit Care Med 1997;156,1640-1646<br />Bassel Ericsoussi, MD<br />14<br />
  39. 39. Artifacts cont.<br />Mirror image<br />Results from the beam encountering a bright reflector (diaphragm)<br />Produces a false object, deep to the mirror that disappears with subtle changes in transducer position<br />Bassel Ericsoussi, MD<br />15<br />
  40. 40. Probes<br />Cardiac<br />Abdominal<br />Endocavity<br />Vascular<br />Lungs<br />2.5-3.5 MHz<br />3.5-5.0 MHz<br />5.0-7.5 MHz<br />7.5-10 MHz<br />5 mhz curvilinear probe is ideal (low frequency for deeper tissue)<br />Bassel Ericsoussi, MD<br />16<br />
  41. 41. 7.5-10 MHz<br />Superficial structures (vessels)<br />1.0-5.0 MHz<br />Cardiac<br />Lung<br />Abdomen<br />Bassel Ericsoussi, MD<br />17<br />
  42. 42. Penetration vs. Resolution<br />Higher frequency, less penetration but better resolution<br />Good for vessels “vascular/linear probe” 7.5 Mhz<br />Lower frequency, better penetration but less resolution<br />Good for abdomen, heart, lung “ genera probe” 3.5 Mhz<br />Bassel Ericsoussi, MD<br />18<br />
  43. 43. Knobology<br />Patient ID<br />Mode<br />Depth<br />Gain<br />THI<br />Save <br />Annotations<br />Bassel Ericsoussi, MD<br />19<br />
  44. 44. Lung Ultrasonography Compared to Chest Radiography<br />Lung ultrasonography is superior to supine portable chest radiographs for detection of<br />PTX<br />Normal aeration pattern<br />Alveolar-interstitial pattern<br />Consolidation<br />Pleural effusion<br />Bassel Ericsoussi, MD<br />20<br />
  45. 45. Equipment Requirement<br />3.5-5.0 MHz transducer<br />Cardiac probe is very effective<br />Has small footprint to fit into narrow intercostal space<br />Bassel Ericsoussi, MD<br />21<br />
  46. 46. Technique<br />Pt supine with arms abducted as needed, lateral decubitus for full examination<br />Transducer in longitudinal orientation<br />Transducer in intercostal space<br />Transducer marker in cephalic position<br />Bassel Ericsoussi, MD<br />22<br />
  47. 47. Ultrasonographic Findings in Normal Lung<br />Sliding lung<br />Lung pulse<br />Pleural Line<br />A lines<br />B lines/Comet-tails<br />Bassel Ericsoussi, MD<br />23<br />
  48. 48. Sliding Lung Sign<br />Represents the movement of visceral against parietal pleura during the respiratory cycle<br />Identified as a shimmering white line at the pleural interface<br />http://www.sonoguide.com/FAST_Video7.html (Shows normal “lung sliding” in its first part.  The second part of the clip shows an abnormal chest view without lung sliding, suspicious for a pneumothorax)<br />Bassel Ericsoussi, MD<br />24<br />
  49. 49. Pleural Line<br /><ul><li>Located 0.5 cm below the rib line
  50. 50. Its visible length between two ribs in the longitudinal scan is approximately 2 cm
  51. 51. The upper rib, pleural line, and lower rib (vertical arrows) outline a characteristic pattern called the bat sign</li></ul>Bassel Ericsoussi, MD<br />25<br />
  52. 52. A Lines<br />“Reverberation” artifacts<br />Horizontal lines parallel to the pleural line.<br />Separated by regular intervals that are equal to the distance between the skin and the pleural line. <br />Seen in normal aeration pattern <br />Predominant A lines plus lung sliding<br />Asthma or COPD<br />Predominant A lines plus absent lung sliding<br />PTX <br />Bassel Ericsoussi, MD<br />26<br />
  53. 53. Bassel Ericsoussi, MD<br />27<br />
  54. 54. Bassel Ericsoussi, MD<br />28<br />
  55. 55. B-lines/Comet-Tail ArtifactsLung Rockets<br /><ul><li>Arise from pleural line, extend to the bottom of the screen
  56. 56. Move with lung sliding
  57. 57. Efface A lines at their point of intersection
  58. 58. Normally seen in the lower lateral lung zones (3-4 lines)
  59. 59. lower lung zone interstitial markings are normal.
  60. 60. Hence, a few Comet Tails in this area are also normal
  61. 61. Correlate with the alveolar interstitial pattern (correlate with the presence of extravascular lung water )on CXR or chest/CT
  62. 62. 7 mm apart B lines: intra-lobular septa process
  63. 63. Diffuse interstitial fibrosis
  64. 64. < 3mm apart “closely spaced” B lines: intra-alveolar process
  65. 65. Pulmonary edema (smooth pleura) or ARDS (rough pleura)</li></ul>Bassel Ericsoussi, MD<br />29<br />
  66. 66. Normal Lung<br />few Comet Tails in the lower lung zone<br />Acute pulmonary edema closely spaced comet-tail artifacts<br />Diffuse interstitial fibrosis comet-tail artifacts are 7 mm apart<br />Bassel Ericsoussi, MD<br />30<br />
  67. 67. E-lines<br />Generated by subcutaneous emphysema<br />Vertical laser-like lines that reach the edge of the screen <br />Similar to B lines but Arise from the chest wall, not from the pleural line<br />Bassel Ericsoussi, MD<br />31<br />
  68. 68. Using Ultrasound to Evaluate for a Pneumothorax<br />Probe placement<br />On the anterior chest in the 3-4th intercostal space and midclavicular line<br />Air rises to the anterior chest wall<br />It is possible to examine the anterior chest very rapidly to promptly exclude PTX<br />In a longitudinal position with the marker-dot pointed cephalad<br />Bassel Ericsoussi, MD<br />32<br />
  69. 69. Bassel Ericsoussi, MD<br />33<br />
  70. 70. Using Ultrasound to Evaluate for a Pneumothorax<br />A high frequency vascular probe but a curvilinear abdominal probe will also work well<br />Decrease the depth setting, so that the ultrasound image shows a maximum depth of about 4 cm. <br />Bassel Ericsoussi, MD<br />34<br />
  71. 71. Using Ultrasound to Evaluate for a Pneumothorax<br />http://www.sonoguide.com/FAST_Video7.html (Shows normal “lung sliding” in its first part.  The second part of the clip shows an abnormal chest view without lung sliding, suspicious for a pneumothorax)<br />Bassel Ericsoussi, MD<br />35<br />
  72. 72. Using Ultrasound to Evaluate for a Pneumothorax<br />The presence of sliding lung rules out PTX with 100% certainty at the site of the transducer<br />However the lack of sliding lung indicates the possibility of PTX<br />PTX<br />Apnea<br />Pleural adhesions<br />Mainstem intubation<br />Mainstem occlusion<br />Very severe parenchymal lung (infiltrates/contusion/ARDS/Atelectasis)<br />Bassel Ericsoussi, MD<br />36<br />
  73. 73. Using Ultrasound to Evaluate for a PneumothoraxB-mode vs. M-modeNormal Lung<br /><ul><li>B-mode: sliding lung
  74. 74. M-mode: Seashore Sign
  75. 75. Horizontal lines (“waves”) representing the static chest wall
  76. 76. granular pattern (“sand”) representing the dynamic artifacts beyond the pleural line</li></ul>Bassel Ericsoussi, MD<br />37<br />
  77. 77. Bassel Ericsoussi, MD<br />38<br />
  78. 78. SEASHORE SIGN<br />Bassel Ericsoussi, MD<br />39<br />
  79. 79. Using Ultrasound to Evaluate for a PneumothoraxB-mode vs. M-modePTX<br />B-mode: Lack of sliding lung<br />M-mode: Stratosphere or Barcode Sign<br />The granular pattern disappear. The seashore sign turn to barcode sign<br />Bassel Ericsoussi, MD<br />40<br />
  80. 80. Bassel Ericsoussi, MD<br />41<br />
  81. 81. STRATOSPHERE SIGN<br />Bassel Ericsoussi, MD<br />42<br />
  82. 82. Using Ultrasound to Evaluate for a PneumothoraxB-mode vs. M-modeLung Point<br />M-mode: Lung Point Sign<br />appear at the precise line where the seashore sign switch to Stratosphere /barcode sign<br />It is a very specific sign for PTX<br />Bassel Ericsoussi, MD<br />43<br />
  83. 83. Using Ultrasound to Evaluate for a Pneumothorax<br />Identifying the lung point is 100% diagnostic for PTX<br />Found at the area where the lung reaches the chest wall<br />http://www.sonoguide.com/FAST_Video8.html (Visceral and parietal pleural movement shows the lung point of a pneumothorax)<br />Bassel Ericsoussi, MD<br />44<br />
  84. 84. Using Ultrasound to Evaluate for a Pneumothorax<br />Identifying the lung point is 100% diagnostic for PTX<br />Absence of lung sliding on B-mode, or stratosphere/barcode sign on M-mode (indicates the possibility of PTX)<br />PTX<br />Apnea<br />Pleural adhesions<br />Mainstem intubation<br />Mainstem occlusion<br />Very severe parenchymal lung (infiltrates/contusion/ARDS/Atelectasis)<br />A-lines with no B-lines/comet-tails is suggestive of PTX<br />Bassel Ericsoussi, MD<br />45<br />
  85. 85. Using Ultrasound to Evaluate for a Pneumothorax<br />American Academy of Emergency Medicine : Chan SSW et al Acad Emerg Med Jan 2003 Vol.10 1.<br />Bassel Ericsoussi, MD<br />46<br />
  86. 86. Using Ultrasound to Evaluate for a Pneumothorax<br />http://www.youtube.com/watch?v=fntJ7GLjCSU&feature=PlayList&p=B9E542E5A7E42CD3<br />Bassel Ericsoussi, MD<br />47<br />
  87. 87. Ultrasound Guided Vascular Access<br />Why not identify the target vessel with ultrasonography, instead of using landmark<br />Bassel Ericsoussi, MD<br />48<br />
  88. 88. General Reference<br />Bassel Ericsoussi, MD<br />49<br />
  89. 89. Common Arguments Against US Guidance<br />I don’t need it<br />It complicates my set-up routine<br />I will lose skill at land mark technique<br />My house officers won’t develop landmark skills<br />I will become dependent on a machine<br />Bassel Ericsoussi, MD<br />50<br />
  90. 90. The Evidence<br />US guidance increases success rate and reduces complication rate<br />Time saving<br />Comfort of the patient<br />Reduction in infection<br />Standard of care<br />Bassel Ericsoussi, MD<br />51<br />
  91. 91. Anatomic Variation in IJ<br />Significant anatomic variation in IJ position and size is common<br />Real time US-guidance for vascular access should be applied all the time<br />Bassel Ericsoussi, MD<br />52<br />
  92. 92. Bassel Ericsoussi, MD<br />53<br />
  93. 93. Equipments<br /><ul><li>Higher frequency, less penetration but better resolution
  94. 94. Good for vessels “vascular/linear probe” 7.5 Mhz
  95. 95. Color doppler is desirable but not required</li></ul>Bassel Ericsoussi, MD<br />54<br />7.5-10 MHz<br />Superficial structures (vessels)<br />
  96. 96. Some Suggestions<br />Always use a sterile transducer cover<br />Chlorhexidine is an excellent US coupling medium<br />Position the screen so that it is easily visible to the operator without head turning<br />Bassel Ericsoussi, MD<br />55<br />
  97. 97. Real Time vs. Marking<br />Why use anything but real-time guidance?<br />Real-time guidance is superior to “mark and stick” technique<br />Bassel Ericsoussi, MD<br />56<br />
  98. 98. Technique: IJ Position<br /><ul><li>Pre-scan to plan approach:
  99. 99. Check sliding lung for later comparison post insertion
  100. 100. Prepare the pt as per routine with sterile transducer cover and properly positioned machine
  101. 101. Obtain transverse view of the IJ
  102. 102. Examine the entire vessel: size, visible clot, stenosis, compressibility</li></ul>Bassel Ericsoussi, MD<br />57<br />
  103. 103. Technique: IJ Position<br /><ul><li>Identify best site
  104. 104. Hold transducer perpendicular in transverse section
  105. 105. Vessel localized to exact center of the transducer
  106. 106. Needle insertion 0.5-1.0 cm from transducer at appropriate angle
  107. 107. Advance needle watching for tissue movement, needle identification and vessel compression by the needle</li></ul>Bassel Ericsoussi, MD<br />58<br />
  108. 108. Problems<br />Avoid site of insertion that places the carotid deep to IJ<br />Avoid pressure that will collapse vessel<br />Needle tip may be difficult to visualize<br />Bassel Ericsoussi, MD<br />59<br />
  109. 109. Transverse view:<br />The IJ vein anterior and lateral to the carotid artery<br />Significant overlap of the artery <br />Transverse view:<br />Less contralateral head rotation<br />less overlap of the artery<br />Longitudinal view of the IJ vein<br />Bassel Ericsoussi, MD<br />60<br />
  110. 110. For the Safety Conscious<br />Visualize the wire in longitudinal view before dilatation<br />Check for sliding lung post-procedure in order to rule out PTX<br />Bassel Ericsoussi, MD<br />61<br />
  111. 111. Subclavian Venous Access<br /><ul><li>Ignore all previous landmark experience
  112. 112. Go lateral and stay away from the clavicle
  113. 113. Locate sc vein in transverse plane
  114. 114. Rotate the transducer to longitudinal view of the vein
  115. 115. Advance needle along midline long axis of the transducer
  116. 116. Do not proceed unless the needle is clearly in US imaging plane!</li></ul>Bassel Ericsoussi, MD<br />62<br />
  117. 117. Bassel Ericsoussi, MD<br />63<br />
  118. 118. Bassel Ericsoussi, MD<br />64<br />
  119. 119. Ultrasound Guided Central Venous Catheter Placement<br />Bassel Ericsoussi, MD<br />65<br />http://www.youtube.com/watch?v=Ahz1SPKTiBU<br />
  120. 120. Placement of an Arterial Line<br />The placement of arterial lines is an important skill for physicians to master as they treat critically ill patients<br />Bassel Ericsoussi, MD<br />66<br />
  121. 121.
  122. 122. Placement of an Arterial LineIndications<br />Patients with hemodynamic instability <br />Patients on vasoactive medications<br />Patients undergoing/recovering from major surgery<br />Patients requiring frequent ABG’s<br />Continuous monitoring of blood pressure allows for better assessment and management of the critically ill patient<br />Bassel Ericsoussi, MD<br />68<br />
  123. 123. Placement of an Arterial Line Contraindications<br />Coagulopathy<br />Infection of the insertion site<br />Scar tissue in the insertion site<br />Trauma proximal to the insertion site<br />Poor collateral circulation <br />Advanced atherosclerosis<br />Raynaud’s phenomenon <br />Thromboangiitis obliterans <br />Bassel Ericsoussi, MD<br />69<br />
  124. 124. Placement of an Arterial Line Selecting the Site<br />Bassel Ericsoussi, MD<br />70<br />
  125. 125. How to Verify a Collateral Circulation to the Hand: “Allen Test”<br /><ul><li>Somewhat controversial
  126. 126. It may give some qualitative assessment of collateral perfusion
  127. 127. Allen Test
  128. 128. Apply pressure on both the ulnar and radial arteries, while the patient tightly making a fist
  129. 129. The hand then is opened
  130. 130. Release pressure from one of the arteries
  131. 131. Circulation should return to the extremity within 5 sec
  132. 132. Any delay suggests poor collateral circulation</li></ul>Bassel Ericsoussi, MD<br />71<br />
  133. 133. Placement of an Arterial Line<br /><ul><li>Equipment
  134. 134. Sterile prep and field
  135. 135. Needle, catheter and wire
  136. 136. 1 % Lidocaine (without epinephrine) with 12 gauge needle and syringe
  137. 137. Scalpel or large bore needle
  138. 138. Suture and needle drive
  139. 139. Wrist board or roll
  140. 140. Transduction system for monitoring</li></ul>Bassel Ericsoussi, MD<br />72<br />
  141. 141. Placement of an Arterial Line<br /><ul><li>Techniques
  142. 142. Over the wire technique
  143. 143. Over the needle technique
  144. 144. Modified Seldinger technique
  145. 145. Hand Positioning
  146. 146. Hand should be positioned on the wrist board
  147. 147. Moderate dorsiflexion, roll placed under the wrist (brings the artery closer to the skin)</li></ul>Bassel Ericsoussi, MD<br />73<br />
  148. 148. Placement of an Arterial Line<br />The radial artery <br />Palpated 1 to 2 cm from the wrist<br />Between the bony head of the distal radius and the Flexor Carpi Radialis Tendon<br />Bassel Ericsoussi, MD<br />74<br />
  149. 149. Over-the-wire Technique<br /><ul><li>Enter the needle at a 30-to-45-degree angle to the skin
  150. 150. Once a flash of blood is seen in the hub of the catheter
  151. 151. Advance the catheter slowly
  152. 152. Pull the needle slowly
  153. 153. Until pulsatile blood flow is observed
  154. 154. Advanced the wire into the vessel
  155. 155. Remove the needle
  156. 156. Advance the catheter over the wire
  157. 157. Remove the wire (Apply pressure over the artery proximal to the catheter before removing the wire)
  158. 158. Connect the catheter to a transduction system</li></ul>Bassel Ericsoussi, MD<br />75<br />
  159. 159. Over-the-needle Technique<br />The initial approach is the same<br />Once pulsatile blood return is seen in the catheter<br />Lower The catheter angle should then be lowered toe catheter angle to 10-15 degree<br /> Advance the catheter over the needle into the vessel<br />Bassel Ericsoussi, MD<br />76<br />
  160. 160. Placement of an Arterial Line<br /><ul><li>The catheter should be secured in place
  161. 161. Suturing (the preferred method)
  162. 162. Taping
  163. 163. Assessment of hand perfusion
  164. 164. Before and after placement of the arterial line
  165. 165. Frequent intervals while the line is in use
  166. 166. check color, temp, capillary refill, and sensation in the hand.
  167. 167. Removal of the arterial line
  168. 168. Any sign of vascular compromise
  169. 169. it is no longer needed</li></ul>Bassel Ericsoussi, MD<br />77<br />
  170. 170. Placement of an Arterial LineTroubleshooting<br /><ul><li>Over the needle technique:
  171. 171. Unable to advance the catheter , catheter hung up on the skin
  172. 172. Make a skin nick using larger bore needle
  173. 173. No blood return is obtained after the initial flush of blood
  174. 174. Advance the catheter through the vessel
  175. 175. Then switch to over the wire technique
  176. 176. Free flow of blood is observed but the catheter will not pass easily
  177. 177. Advance the needle slightly farther, the catheter can enter the artery</li></ul>Bassel Ericsoussi, MD<br />78<br />
  178. 178. Placement of an Arterial LineArtery Spasm<br />Due to multiple attempts of cannulation<br />Nearly impossible to cannulate<br />A new site should be chosen<br />Bassel Ericsoussi, MD<br />79<br />
  179. 179. Placement of an Arterial LineTips and Pointers<br />If the catheter is in the radial artery, don’t hyperextend the wrist…it can cause nerve damage<br />Don’t deliver meds via an arterial line<br />Keep pressure bag at 300 mm Hg to maintain a continuous flow of 2-3 ml/hr of flush solution<br />Bassel Ericsoussi, MD<br />80<br />
  180. 180. Placement of an Arterial Line Complications/Hazards<br /><ul><li>Infection
  181. 181. Hemorrhage
  182. 182. Can lose blood at a rate of 500 ml/min with disconnection
  183. 183. Hidden bleeding can occur if the catheter tip punctures the posterior wall of the artery
  184. 184. Thrombus
  185. 185. Embolism (air or thrombus)
  186. 186. Decreased distal blood flow
  187. 187. Nerve damage</li></ul>Bassel Ericsoussi, MD<br />81<br />
  188. 188. Placement of an Arterial Line The Waveforms<br />Bassel Ericsoussi, MD<br />82<br />
  189. 189. Placement of an Arterial Line The Normal Waveform<br />Bassel Ericsoussi, MD<br />83<br />Dicrotic limb<br />Aanacrotic limb<br />rapid ejection of blood from the ventricle<br />Aortic valve closes causing some retrograde blood flow.<br />Opening of the aortic Valve<br />SQUARE WAVE TEST: <br />1.5-2 oscillations<br />before returning to baseline<br />
  190. 190. Placement of an Arterial LineOverdamping<br /><ul><li>Air bubbles in the system
  191. 191. Too many stopcocks
  192. 192. Kink in the catheter
  193. 193. kink in the tubing
  194. 194. Blood on the transducer
  195. 195. Clot in the catheter
  196. 196. Empty flush bag
  197. 197. Aortic stenosis
  198. 198. Vasodilation
  199. 199. Low cardiac output</li></ul>Bassel Ericsoussi, MD<br />84<br /><ul><li>SQUARE WAVE TEST: <1 oscillation
  200. 200. Smooth waveform that loses the dicrotic notch
  201. 201. SBP falsely low
  202. 202. DBP may be high
  203. 203. False narrowing of pulse pressure</li></li></ul><li>Placement of an Arterial Line Underdamping<br /><ul><li>Excessive tubing
  204. 204. Excessive catheter movement
  205. 205. Atherosclerosis
  206. 206. Vasoconstriction
  207. 207. Aortic regurgitation
  208. 208. Hyperdynamic states
  209. 209. Hypertension</li></ul>Bassel Ericsoussi, MD<br />85<br /><ul><li>SQUARE WAVE TEST: >3 oscillations
  210. 210. Sharp exaggerated waveform with overshoot of the systolic pressure and undershoot of the diastolic
  211. 211. False wide pulse pressure</li></li></ul><li>Placement of an Arterial Line Variable Amplitude<br />Bassel Ericsoussi, MD<br />86<br /><ul><li>Regular rhythm
  212. 212. PulsusParadoxus: amplitude decreases during inspiration and increases during expiration
  213. 213. Irregular rhythm
  214. 214. Atrial Fibrillation</li></li></ul><li>Placement of an Arterial Line<br />Bassel Ericsoussi, MD<br />87<br />Video<br />
  215. 215. Goal Directed Echocardiography in Shock<br />Using a goal-directed echocardiographic approach combined with clinical context, you can reliably diagnose causes of shock<br />Easy to learn<br />Rapid to perform<br />Changes management 60-70% of time in ICU (DEBATED)<br />Bassel Ericsoussi, MD<br />88<br />
  216. 216. Goal Directed Echocardiography Training<br />80% sensitivity for “clinically important findings”<br />IM residents<br />20 hr course<br />20 goal directed studies<br />Bassel Ericsoussi, MD<br />89<br />
  217. 217. Bassel Ericsoussi, MD<br />90<br />
  218. 218. Bassel Ericsoussi, MD<br />91<br />
  219. 219. Parasternal Long Axis View<br />Probe position<br />Left of the sternum<br />3rd-4th intercostal space<br />Marker toward the pt’s right shoulder<br />Bassel Ericsoussi, MD<br />92<br />
  220. 220. Parasternal Long Axis View<br />Bassel Ericsoussi, MD<br />93<br />
  221. 221. Parasternal Long Axis View<br />Bassel Ericsoussi, MD<br />94<br />
  222. 222. Parasternal Short Axis View<br />Probe position<br />Rotate the probe 90 degree from the PSLA view<br />The marker toward the pt’s left shoulder <br />3 views (tilting the probe toward the base or toward the apex) <br />At the level of mitral valve<br />At the level of papillary muscles<br />At the level of the aortic valve <br />Bassel Ericsoussi, MD<br />95<br />
  223. 223. Parasternal Short Axis View<br />Bassel Ericsoussi, MD<br />96<br />
  224. 224. Parasternal Short Axis ViewAt the Level of the Mitral Valve<br />Bassel Ericsoussi, MD<br />97<br />
  225. 225. Parasternal Short Axis ViewAt the Level of the Papillary Muscles<br />Bassel Ericsoussi, MD<br />98<br />
  226. 226. Parasternal Short Axis ViewAt the level of aortic valve<br />Bassel Ericsoussi, MD<br />99<br />
  227. 227. Apical 4 Chambers View<br />Probe position<br />Point of Maximal Impulse (PMI)<br />The probe’s marker toward the pt’s left posterior axillae<br />Bassel Ericsoussi, MD<br />100<br />
  228. 228. Apical 4 Chambers View<br />Bassel Ericsoussi, MD<br />101<br />
  229. 229. Apical 4 Chambers View<br />Bassel Ericsoussi, MD<br />102<br />
  230. 230. Subcostal View <br />The easiest to be obtained in an ICU pt<br />Probe location<br />Subcostal area<br />Marker toward the pt’s left side <br />Acute angle toward the pt’s left shoulder<br />Bassel Ericsoussi, MD<br />103<br />
  231. 231. Subcostal View <br />Bassel Ericsoussi, MD<br />104<br />
  232. 232. Subcostal View <br />Bassel Ericsoussi, MD<br />105<br />
  233. 233. Goal Directed Echocardiography in Shock<br /><ul><li>Cardiogenic shock
  234. 234. Severe ventricular failure
  235. 235. Severe LV dysfunction (EF<25%)
  236. 236. Decreased LV contractility
  237. 237. Severe LV hypokinesis
  238. 238. Wall motion abnormality
  239. 239. Cardiorespiratory arrest
  240. 240. During CPR in a pulseless pt
  241. 241. Lack of mechanical cardiac activity: very poor prognosis </li></ul>Bassel Ericsoussi, MD<br />106<br />
  242. 242. Goal Directed Echocardiography in Shock<br />Hypovolemic Shock<br />Severe underfilling of LV<br />Small and hyperdynamic LV<br />Systolic obliteration of LV cavity<br />Small IVC with respiratory variability<br />Bassel Ericsoussi, MD<br />107<br />
  243. 243. Goal Directed Echocardiography in Shock<br /><ul><li>Acute Cor Pulmonaly
  244. 244. PE
  245. 245. ARDS (High PEEP, increased pulmonary vascular resistance)
  246. 246. RV infarct
  247. 247. Air/fat embolism
  248. 248. Severe RV Dilation: RV size > LV size (normal RV size = 60% of LV)
  249. 249. Severe RV dysfunction
  250. 250. Apex formed by RV
  251. 251. Paradoxical septal movement
  252. 252. RA dilation
  253. 253. Dilated and invariable IVC
  254. 254. Small and Hyperdynamic LV</li></ul>Bassel Ericsoussi, MD<br />108<br />
  255. 255. <ul><li>RV pressure overload with septal flattening causes D sign
  256. 256. EchoJournal: Echocardiography Videos and Discussions - RV pressure overload causes D sign
  257. 257. McConnell’s Sign: Regional wall motion abnormalities that spare the right ventricular apex
  258. 258. http://www.echojournal.org/video/132/McConnells-Sign-RV-dysfunction-in-pulmonary-embolus
  259. 259. RV dilation (RV > LV), apex formed by RV, Tricuspid regurgitation (RV failure in acute pulmonary embolus )
  260. 260. http://www.echojournal.org/video/133/Huge-Tricuspid-Regurg-Jet
  261. 261. http://www.echojournal.org/video/79/Classic-appearance-of-RV-failure-in-acute-pulmonary-embolus-1-of-2
  262. 262. http://www.echojournal.org/video/80/Classic-appearance-of-RV-failure-in-acute-pulmonary-embolus-2-of-2</li></ul>Bassel Ericsoussi, MD<br />Pulmonary and Critical Care Fellow<br />
  263. 263.
  264. 264.
  265. 265.
  266. 266.
  267. 267.
  268. 268.
  269. 269. Goal Directed Echocardiography in Shock<br />Tamponade<br />Pericardial effusion (PSLA view is best for differentiating pleural from pericardial effusion)<br />Diastolic collapse of RV and RA<br />IVC Dilated without respiratory variation<br />Bassel Ericsoussi, MD<br />116<br />
  270. 270. Diastolic Collapse of RV<br />Bassel Ericsoussi, MD<br />117<br />
  271. 271. Assessment of Fluid Status and Measures of Volume Responsiveness<br />When to do volume challenge and volume rescusetation?<br />Pulse pressure variation (needs arterial line)<br />Bassel Ericsoussi, MD<br />118<br />
  272. 272. Assessment of Fluid Status and Measures of Volume Responsiveness<br />IVC variation<br />In subcostal view measure IVC 3 cm from RA<br />Max D – min D / average D > 12%<br />Max D - min D / min D > 18%<br />Bassel Ericsoussi, MD<br />119<br />
  273. 273. Assessment of Fluid Status and Measures of Volume Responsiveness<br />Limitations of IVC and pulse pressure variations, all patients must be<br />Sinus rhythm<br />Passive on ventilator (AC)<br />Off pressors<br />Absence of increased abdominal pressure<br />Good luck finding these patient<br />Bassel Ericsoussi, MD<br />120<br />
  274. 274. IVC Evaluation<br /><ul><li>Probe position
  275. 275. Subcostal
  276. 276. Longitudinal
  277. 277. The probe’s marker toward the pt’s feet
  278. 278. Measure proximal IVC AP diameter 3 cm from the RA
  279. 279. With sniffing or forceful inhalation
  280. 280. Collapses > 50 %: normal
  281. 281. Collapses < 50 %: elevated CVP and right sided pressures</li></ul>Bassel Ericsoussi, MD<br />121<br />
  282. 282. IVC Evaluation<br />Bassel Ericsoussi, MD<br />122<br />
  283. 283. IVC Evaluation<br />Bassel Ericsoussi, MD<br />123<br />
  284. 284. > 50 % collapse with inhalation: normal<br />Bassel Ericsoussi, MD<br />124<br />
  285. 285. < 50 % collapse with inhalation:elevated CVP and right sided pressures<br />Bassel Ericsoussi, MD<br />125<br />
  286. 286. Assessment of Fluid Status and Measures of Volume Responsiveness<br /><ul><li>Straight leg raising test: Can be done on any patient
  287. 287. Sinus or irregular rhythm
  288. 288. Spontaneous breathing or on ventilator
  289. 289. On pressors or off pressors
  290. 290. Use apical 5 chamber view and measure the aortic blood flow (stroke volume)
  291. 291. Raise legs to 45 degree (you have just given a “blood bolus” 500 ml blood in legs returned to the heart)
  292. 292. Wait 30-60-90 sec (highest values within 90 sec)
  293. 293. Recheck the stroke volume
  294. 294. SVV > 12%</li></ul>Bassel Ericsoussi, MD<br />126<br />
  295. 295. Goal Directed Echocardiography in Shock<br />Video<br />Bassel Ericsoussi, MD<br />127<br />

×