Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

1,898 views

1,787 views

1,787 views

Published on

No Downloads

Total views

1,898

On SlideShare

0

From Embeds

0

Number of Embeds

296

Shares

0

Downloads

53

Comments

0

Likes

2

No embeds

No notes for slide

- 1. CYCLOIDS
- 2. What is a Cycloid? A cycloid is a curve generated by a point on the circumference of a circle as the circle rolls along a straight line without slipping The moving circle is called a generating circle and the straight line is called a directing line or base line. The point on the generating circle which traces the curve is called the generating point.
- 3. Construction of a Cycloid Step 1:Draw the generating circle and base line equal to circumference of generating circle.
- 4. Step 2: Divide the circle and base line into an equal number of parts. Also erect the perpendicular lines from the divisions of line.
- 5. Step 3: With your compass set to the radius of the circle and centers as C1,C2,C3, etc cut the arcs on the lines from circle through 1,2,3, etc.
- 6. Step 4: Locate the points which are produced by cutting arcs and join them by a smooth curve.
- 7. By joining these new points you will have created the locus of the point P for the circle as it rotates along the straight line without slipping.
- 8. And your final result is a Cycloid.
- 9. Construction of a Tangent and a Normal to apoint on a Cycloid. Mark any point P1 on the curve and with the radius of the circle mark on the centre line of the rotating circle. From that point draw horizontal line which meets the base line at some point. Now join both the points with a line which is the required normal and draw a perpendicular to normal, tangent is obtained.
- 10. EPICYCLOIDS
- 11. What is Epicycloid? The cycloid is called the epicycloid when the generating circle rolls along another circle outside (directing circle) The curve traced by a point on a circle which rolls on the outside of a circular base surface.
- 12. Construction of Epicycloid 9 8 5 Steps 1: Draw and divide10 4 rolling circle into 12 equal divisions. 11 3 12 2 4 P Step 2: Transfer the 12 divisions on to the base surface. BASE LINE
- 13. 8 Step 3: Mark the 1210 9 C1 5 4 positions of the circle 11 12 2 3 4 – centre (C1,C2, …) as the circle rolls on P the base surface. Step 4: Project the positions of the point C1 from the circle. CENTRE LINE BASE LINE
- 14. Step 5: Using the 8 9 510 C1 3 radius of the circle and from the marked 11 12 2 4 P centres C1,C2,C3 etc cut ff the arcs through 1,2,3 C1 Step 6: Darken the curve. CENTRE LINE BASE LINE
- 15. Draw an epicycloid of rolling circle diameter 40 mm which rolls outside another circle (base circle) of 150mm diameter for one revolution
- 16. Step 1: Draw an arc PQ with radius75 mm and centre O, subtending and angle 96º. P is the generating point. On OP produced mark PC = 20mm. Draw a circle with centre C and radius 20 mm. Step 2 : Divide rolling diameter in to12 equal parts and name them as 1,2,3,4… 12 in Clock Wise direction. Step 3 : With O as centre draw concentric arcs passing through1,2,3,…,12. Step 4 : With O as centre and OC as radius, draw an arc to represent locus of centre. Step 5 : Divide arc PQ in to 12 equal parts and name them as1’, 2’, …., 12’. Step 6 : JoinO1’, O2’, …and produce them to cut the locus of centers atC1, C2, …. Step 7 : Taking C1 as centre, and radius equal to 20 mm, draw an arc cutting the arc through1 at P1. Similarly obtain pointsP2, P3,…., P12.
- 17. HYPOCYCLOIDS
- 18. CONSTRUCTION OF A HYPOCYCLOIDThe curve traced by a point on a circle which rolls onthe inside of a circular base surface. Step 1: Divide rolling circle into 12 equal divisions. Step 2: Transfer the 12 divisions on to the base surface.
- 19. Step 3: Mark the 12 positions of the circle – centre (C1,C2, …) as the circle rolls on the base surface. Step 4: Project the positions of the point from the circle.
- 20. P 2 4 12 2 11 3 Step 5: Using the10 C1 4 radius of the circle 9 5 and from the 8 7 C7 marked centres step off the position of the point. Step 6: Darken the C1 BASE LINE curve. CENTRE LINE
- 21. Applications of cycloid curves: Cycloid curves are used in the design of gear tooth profiles. It is also used in the design of conveyor of mould boxes in foundry shops.
- 22. Cycloid curves are commonly used in kinematics (motion studies) and in mechanism s that work with rolling contact.

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment