• Like
TPC-H in MongoDB
Upcoming SlideShare
Loading in...5

Thanks for flagging this SlideShare!

Oops! An error has occurred.

TPC-H in MongoDB


Run TPC-H queries in MongoDB and benchmark against MySQL RDBMS

Run TPC-H queries in MongoDB and benchmark against MySQL RDBMS

Published in Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads


Total Views
On SlideShare
From Embeds
Number of Embeds



Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

    No notes for slide


  • 1. TPC-H inMongoDBAung Thu Rha Hein(g5536871)
  • 2. Agenda• Introduction to MongoDB• TPC-H Data Setup• Schema• Advantages and Disadvantages of New Schema• Queries o Pricing Summary Record o National Market Share Query o Total Supplier Query o Potential Part Promotion Query o Suppliers who kept orders waiting query o Global Sales Opportunity Query• Benchmark result• Discussion• Demonstration
  • 3. Introduction to MongoDB• Open source, document-oriented and schema-free• Store data in BSON format• Easy to understand• Flexible, Scalable & lightweight• Ease of use• No ‘join’ operation• SQL to MongoDB Sample Query• Select * from users where status = “A” ORDER BY USER_ID DESC• db.users.find( { status: "A" } ).sort( { user_id: -1 } )
  • 4. TPC-H Data Setup• Import data into MongoDB o Use MongoVue to import from MySQL o Time consuming and difficult• To achieve flexibility: o Embedded all tables into single collection o Replace all foreign keys with objects from lineitem table o Choose lineitem table because of • No primary keys
  • 5. Schema • Final Schema of TPC-H in MongoDBlineitemOrder CustomerNation Region Partsupp Part supplier N R
  • 6. Advantages and Disadvantages of New Schema• Advantages o Easier to understand than SQL schema o One document: one record o No need to join tables• Disadvantages o Higher memory usage o Update operation becomes more demanding o Converting to BSON takes time o Require lot of computational power o Only around 300,000(5%) count of lineitem able to convert
  • 7. Queries• Select 6 queries to run on MongoDB with Map- Reduce & Aggregation Framework• Compare the result with MySQLPROBLEMS• Outputs are not the same because of failure during converting data• Aggregation framework is still in development
  • 8. Q1: Pricing Summary Record Query
  • 9. Q8:National Market ShareQuery
  • 10. Q15:Top Supplier Query
  • 11. Q20:Potential part Promotion Query
  • 12. Q21:Supplier who kept orderwaiting
  • 13. Q22:Global Sales Opportunity
  • 14. Benchmark result• All benchmarks run on Intel Core i7-3610QM 2.30GHz 6MB cache,4GB DDR3,750GB 7200 RPM,Win64 system• Query1 MongoDB 6.1 sec MySQL 0.2 sec• Query 8 MongoDB 1.6 sec MySQL 0.1 sec• Query15 MongoDB 0.7 sec MySQL 0.4 sec
  • 15. Benchmark result(cont.)• Query 20 MongoDB 1.1 sec MySQL 174.4 sec• Query 21 MongoDB 6.2 sec MySQL 5.5 sec• Query 22 MongoDB 7.6 sec MySQL 0.8 sec
  • 16. Discussion & Conclusion• MongoDB left behind in all queries o Design problem o Aggregation framework problem o No standard Query Language o Server side query processing is not the nature of NoSQL o Complex SQL cannot convert easily• Only suitable for Applications: o Business card database o Web Blog o Applications without complex transactions
  • 17. Demonstration