Math 1300: Section 4-5 Inverse of a Square Matrix
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Math 1300: Section 4-5 Inverse of a Square Matrix

  • 1,472 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
1,472
On Slideshare
1,269
From Embeds
203
Number of Embeds
2

Actions

Shares
Downloads
37
Comments
0
Likes
1

Embeds 203

http://bblearn.missouri.edu 201
https://bblearn.missouri.edu 2

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyMath 1300 Finite MathematicsSection 4.5 Inverse of a Square Matrix Jason Aubrey Department of Mathematics University of Missouri university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 2. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyDefinition (Identity Matrix for Multiplication)An n × n matrix with the properties that university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 3. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyDefinition (Identity Matrix for Multiplication)An n × n matrix with the properties that every element on the principal diagonal is a 1, and university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 4. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyDefinition (Identity Matrix for Multiplication)An n × n matrix with the properties that every element on the principal diagonal is a 1, and every other element is 0 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 5. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyDefinition (Identity Matrix for Multiplication)An n × n matrix with the properties that every element on the principal diagonal is a 1, and every other element is 0is called the n × n identity matrix. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 6. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyFor example, 1 0 I2 = 0 1is the 2 × 2 identity matrix. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 7. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyFor example, 1 0 I2 = 0 1is the 2 × 2 identity matrix.   1 0 0 I3 = 0 1 0 0 0 1is the 3 × 3 identity matrix. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 8. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyFor example, 1 0 I2 = 0 1is the 2 × 2 identity matrix.   1 0 0 I3 = 0 1 0 0 0 1is the 3 × 3 identity matrix.The reason In is called ’the n × n identity matrix’ is because AIn = A In B = B university-logowhenever those products are defined. Jason Aubrey Math 1300 Finite Mathematics
  • 9. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 1 3 0 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 10. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 = = 1 3 0 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 11. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) = = 1 3 0 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 12. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2 = = 1 3 0 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 13. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 = = 1 3 0 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 14. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 15. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 16. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 17. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 18. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 3 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 19. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 3 1 0 2 −1 = = 0 1 1 3 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 20. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 3 1 0 2 −1 2(1) + 1(0) = = 0 1 1 3 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 21. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 3 1 0 2 −1 2(1) + 1(0) 2 = = 0 1 1 3 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 22. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 3 1 0 2 −1 2(1) + 1(0) 1(−1) + 3(0) 2 = = 0 1 1 3 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 23. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 3 1 0 2 −1 2(1) + 1(0) 1(−1) + 3(0) 2 −1 = = 0 1 1 3 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 24. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 3 1 0 2 −1 2(1) + 1(0) 1(−1) + 3(0) 2 −1 = = 0 1 1 3 0(2) + 1(1) university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 25. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 3 1 0 2 −1 2(1) + 1(0) 1(−1) + 3(0) 2 −1 = = 0 1 1 3 0(2) + 1(1) 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 26. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 3 1 0 2 −1 2(1) + 1(0) 1(−1) + 3(0) 2 −1 = = 0 1 1 3 0(2) + 1(1) 0(−1) + 1(3) 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 27. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: 2 −1 1 0 2(1) − 1(0) 2(0) − 1(1) 2 −1 = = 1 3 0 1 1(1) + 3(0) 1(0) + 3(1) 1 3 1 0 2 −1 2(1) + 1(0) 1(−1) + 3(0) 2 −1 = = 0 1 1 3 0(2) + 1(1) 0(−1) + 1(3) 1 3 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 28. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample:    1 0 0 2 0 2 0 1 0 −1 1 −3 0 0 1 1 0 3 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 29. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample:    1 0 0 2 0 2 0 1 0 −1 1 −3 0 0 1 1 0 3   1(2) + 0(−1) + 0(1) 1(0) + 0(1) + 0(0) 1(2) + 0(−3) + 0(3)= 0(2) + 1(−1) + 0(1) 0(0) + 1(1) + 0(0) 0(2) + 1(−3) + 0(3) 0(2) + 0(−1) + 1(1) 0(0) + 0(1) + 1(0) 0(2) + 0(−3) + 1(3) university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 30. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample:    1 0 0 2 0 2 0 1 0 −1 1 −3 0 0 1 1 0 3   1(2) + 0(−1) + 0(1) 1(0) + 0(1) + 0(0) 1(2) + 0(−3) + 0(3)= 0(2) + 1(−1) + 0(1) 0(0) + 1(1) + 0(0) 0(2) + 1(−3) + 0(3) 0(2) + 0(−1) + 1(1) 0(0) + 0(1) + 1(0) 0(2) + 0(−3) + 1(3)   2 0 2 = −1 1 −3 1 0 3 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 31. Identity Matrix for Multiplication Inverse of a Square Matrix Application: Cryptography   2 0 2 1 0 0−1 1 −3 0 1 0 1 0 3 0 0 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 32. Identity Matrix for Multiplication Inverse of a Square Matrix Application: Cryptography    2 0 2 1 0 0 −1 1 −3 0 1 0 1 0 3 0 0 1   2(1) + 0(0) + 2(0) 2(0) + 0(1) + 2(0) 2(0) + 0(0) + 2(1)= −1(1) + 1(0) − 3(0) −1(0) + 1(1) − 3(0) −1(0) + 1(0) − 3(1) 1(1) + 0(0) + 3(0) 1(0) + 0(1) + 3(0) 1(0) + 0(0) + 3(1) university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 33. Identity Matrix for Multiplication Inverse of a Square Matrix Application: Cryptography    2 0 2 1 0 0 −1 1 −3 0 1 0 1 0 3 0 0 1   2(1) + 0(0) + 2(0) 2(0) + 0(1) + 2(0) 2(0) + 0(0) + 2(1)= −1(1) + 1(0) − 3(0) −1(0) + 1(1) − 3(0) −1(0) + 1(0) − 3(1) 1(1) + 0(0) + 3(0) 1(0) + 0(1) + 3(0) 1(0) + 0(0) + 3(1)   2 0 2 = −1 1 −3 1 0 3 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 34. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyDefinitionLet M be a square matrix of order n and I be the identity matrixof order n. If there exists a matrix M −1 (read "M inverse") suchthat M −1 M = MM −1 = Ithen M −1 is called the multiplicative inverse of M or, moresimply, the inverse of M. If no such matrix exists, then M is saidto be a singular matrix. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 35. Identity Matrix for Multiplication Inverse of a Square Matrix Application: Cryptography 3 −4 3 4Example: The matrices and are inverses of −2 3 2 3each other because 3 −4 3 4 1 0 = −2 3 2 3 0 1and 3 4 3 −4 1 0 = 2 3 −2 3 0 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 36. Identity Matrix for Multiplication Inverse of a Square Matrix Application: Cryptography 2 2 1 1 0 0Example: Since = We conclude −1 −1 −1 −1 0 0 2 2 1 1that and are not inverses of each other. −1 −1 −1 −1(In fact, these matrices have no inverses). university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 37. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyTo find the inverse of a square matrix M, university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 38. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyTo find the inverse of a square matrix M, 1 Form the augmented matrix [M |I ] university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 39. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyTo find the inverse of a square matrix M, 1 Form the augmented matrix [M |I ] 2 Use row operations to transform [M |I ] into [I |B ] university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 40. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyTo find the inverse of a square matrix M, 1 Form the augmented matrix [M |I ] 2 Use row operations to transform [M |I ] into [I |B ] 3 The matrix B is the inverse of M; in other words, M −1 = B university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 41. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: Let 2 −6 M= 1 −2Find the inverse of M, if it exists. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 42. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: Let 2 −6 M= 1 −2Find the inverse of M, if it exists. −1 3 M −1 = 1 −2 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 43. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: Let 3 1 M= 6 2Find the inverse of M, if it exists. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 44. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: Let 3 1 M= 6 2Find the inverse of M, if it exists. 3 1 1 0 6 2 0 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 45. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: Let 3 1 M= 6 2Find the inverse of M, if it exists. 3 1 1 0 −2R +R →R − − 1− − −2 − − −2 − → 6 2 0 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 46. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: Let 3 1 M= 6 2Find the inverse of M, if it exists. 3 1 1 0 −2R +R →R 3 1 1 0 − − 1− − −2 − − −2 − → 6 2 0 1 0 0 −2 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 47. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: Let 3 1 M= 6 2Find the inverse of M, if it exists. 3 1 1 0 −2R1 +R2 →R2 3 1 1 0 −− − − − − − − −→ 6 2 0 1 0 0 −2 1Here we have a problem: the row with zeros on the leftindicates that our matrix M has no inverse. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 48. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyExample: Let 3 1 M= 6 2Find the inverse of M, if it exists. 3 1 1 0 −2R1 +R2 →R2 3 1 1 0 −− − − − − − − −→ 6 2 0 1 0 0 −2 1Here we have a problem: the row with zeros on the leftindicates that our matrix M has no inverse.During the process of finding the inverse of M, if a row resultswith all zeros on the left of the vertical bar (the M side), then Mhas no inverse. In this case, M is called a singular matrix. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 49. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyCryptography Matrix inverses can provide a simple and effective procedure for encoding and decoding messages. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 50. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyCryptography Matrix inverses can provide a simple and effective procedure for encoding and decoding messages. To begin, assign the numbers 1-26 to the letters in the alphabet. Also assign the number 0 to a blank to provide for space between words. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 51. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyBlank A B C D E F G H I J K L M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 52. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyBlank A B C D E F G H I J K L M 0 1 2 3 4 5 6 7 8 9 10 11 12 13N O P Q R S T U V W X Y Z14 15 16 17 18 19 20 21 22 23 24 25 26 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 53. Identity Matrix for Multiplication Inverse of a Square Matrix Application: Cryptography Blank A B C D E F G H I J K L M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 N O P Q R S T U V W X Y Z 14 15 16 17 18 19 20 21 22 23 24 25 26For example, the sequence 19 5 3 18 5 20 0 3 15 4 5 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 54. Identity Matrix for Multiplication Inverse of a Square Matrix Application: Cryptography Blank A B C D E F G H I J K L M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 N O P Q R S T U V W X Y Z 14 15 16 17 18 19 20 21 22 23 24 25 26For example, the sequence 19 5 3 18 5 20 0 3 15 4 5corresponds to the (plaintext) message “SECRET CODE”. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 55. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyAny matrix whose elements are positive integers and whoseinverse exists can be used as an encoding matrix. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 56. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyAny matrix whose elements are positive integers and whoseinverse exists can be used as an encoding matrix. Forexample, to use the 2 × 2 matrix 4 3 A= 1 1to encode the preceeding message, university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 57. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyAny matrix whose elements are positive integers and whoseinverse exists can be used as an encoding matrix. Forexample, to use the 2 × 2 matrix 4 3 A= 1 1to encode the preceeding message, first we divide the numbersin the sequence into groups of 2 and use these groups as thecolumns of a matrix B with 2 rows. university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 58. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyAny matrix whose elements are positive integers and whoseinverse exists can be used as an encoding matrix. Forexample, to use the 2 × 2 matrix 4 3 A= 1 1to encode the preceeding message, first we divide the numbersin the sequence into groups of 2 and use these groups as thecolumns of a matrix B with 2 rows. 19 3 5 0 15 5 B= 5 18 20 3 4 0 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 59. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyThen we multiply on the left by A: 4 3 19 3 5 0 15 5 AB = 1 1 5 18 20 3 4 0 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 60. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyThen we multiply on the left by A: 4 3 19 3 5 0 15 5 AB = 1 1 5 18 20 3 4 0 91 66 80 9 72 20 = 24 21 25 3 19 5 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 61. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyThen we multiply on the left by A: 4 3 19 3 5 0 15 5 AB = 1 1 5 18 20 3 4 0 91 66 80 9 72 20 = 24 21 25 3 19 5Thus the coded message (the ciphertext) is 91 24 66 21 80 25 9 3 72 19 20 5 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 62. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyThen we multiply on the left by A: 4 3 19 3 5 0 15 5 AB = 1 1 5 18 20 3 4 0 91 66 80 9 72 20 = 24 21 25 3 19 5Thus the coded message (the ciphertext) is 91 24 66 21 80 25 9 3 72 19 20 5This message can be decoded by putting it back into matrixform and multiplying on the left by the decoding matrix A−1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 63. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyWe have 91 66 80 9 72 20 4 3 C= and A = 24 21 25 3 19 5 1 1 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 64. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyWe have 91 66 80 9 72 20 4 3 C= and A = 24 21 25 3 19 5 1 1 1 −3 A−1 = −1 4 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 65. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyWe have 91 66 80 9 72 20 4 3 C= and A = 24 21 25 3 19 5 1 1 1 −3 A−1 = −1 4To decipher the ciphertext, we multiply: 1 −3 91 66 80 9 72 20 A−1 C = −1 4 24 21 25 3 19 5 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 66. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyWe have 91 66 80 9 72 20 4 3 C= and A = 24 21 25 3 19 5 1 1 1 −3 A−1 = −1 4To decipher the ciphertext, we multiply: 1 −3 91 66 80 9 72 20 A−1 C = −1 4 24 21 25 3 19 5 19 3 5 0 15 5 = 5 18 20 3 4 0 university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 67. Identity Matrix for Multiplication Inverse of a Square Matrix Application: CryptographyBlank A B C D E F G H I J K L M 0 1 2 3 4 5 6 7 8 9 10 11 12 13N O P Q R S T U V W X Y Z14 15 16 17 18 19 20 21 22 23 24 25 26 19 3 5 0 15 5 P= 5 18 20 3 4 0 . university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 68. Identity Matrix for Multiplication Inverse of a Square Matrix Application: Cryptography Blank A B C D E F G H I J K L M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 N O P Q R S T U V W X Y Z 14 15 16 17 18 19 20 21 22 23 24 25 26 19 3 5 0 15 5 P= 5 18 20 3 4 0This gives the sequence 19 5 3 18 5 20 0 3 15 4 5 . university-logo Jason Aubrey Math 1300 Finite Mathematics
  • 69. Identity Matrix for Multiplication Inverse of a Square Matrix Application: Cryptography Blank A B C D E F G H I J K L M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 N O P Q R S T U V W X Y Z 14 15 16 17 18 19 20 21 22 23 24 25 26 19 3 5 0 15 5 P= 5 18 20 3 4 0This gives the sequence 19 5 3 18 5 20 0 3 15 4 5And this corresponds to the plaintext message “SECRETCODE”. university-logo Jason Aubrey Math 1300 Finite Mathematics