Upcoming SlideShare
×

# BasicGraphsWithR

986 views
859 views

Published on

Published in: Education, Technology
1 Comment
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Very nice slides! Thanks for sharing.

Are you sure you want to  Yes  No
• Be the first to like this

Views
Total views
986
On SlideShare
0
From Embeds
0
Number of Embeds
23
Actions
Shares
0
39
1
Likes
0
Embeds 0
No embeds

No notes for slide

### BasicGraphsWithR

1. 1. by Aureliano Bombarely Gomez Boyce Thompson Institute for Plant Research Tower Road Ithaca, New York 14853-1801 U.S.A. Graphs With R
2. 2. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
3. 3. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
4. 4. 1. Introduction to R R is a language and environment for statistical computing and graphics..
5. 5. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
6. 6. 1.1 R Software and documentation https://www.rstudio.com/ RStudio IDE is a powerful and productive user interface for R. R STUDIO:
7. 7. 1.1 R Software and documentation 1 - Menu 2 - File viewer 3 - Console 4a - Variable list 4b - History 5a - File browser 5b - Plots 5c - Packages 5d - Manuals
8. 8. 1.1 R Software and documentation WEB: OFICIAL WEB: http://www.r-project.org/index.html QUICK-R: http://www.statmethods.net/index.html BOOKS: • Introductory Statistics with R (Statistics and Computing), P. Dalgaard [available as manual at R project web] • The R Book, MJ. Crawley R itself: help() and example()
9. 9. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
10. 10. Basic RVariables: ★ Vectors. ★ Matrices and arrays. ★ Dataframes and list. 1.2 Basic R variables
11. 11. Basic RVariables: ★ Vectors. 1.2 Basic R variables Most simple 'data structure' in R. Ordered collection of data values. To create a vector use command: c() Examples: count = c(1, 2, 3, 4, 5, 6) plants = c(“tomato”, “potato”, “soybean”)
12. 12. Basic RVariables: ★ Vectors. 1.2 Basic R variables Operation with vectors: • Addition: x + y • Substraction: x - y • Division: x / y • Exponentation: x ^ y • Square root: sqrt(x) • Absolute value: abs(x) • Mean and median: mean(x) and median(x).
13. 13. Basic RVariables: ★ Matrices and arrays. 1.2 Basic R variables A matrix is a two dimension vector with positive values. To create a matrix use command: matrix(c(), ncol, nrow) Examples: mtx1 = matrix(c(1, 4, 8, 9, 5, 6, 2, 1, 1), ncol=3, nrow=3) 1 4 8 9 5 6 2 1 1
14. 14. Basic RVariables: ★ Matrices and arrays. 1.2 Basic R variables Matrices have index and they can be replaced by names [ ,1] [ ,2] [ ,3] [1, ] 1 4 8 [2, ] 9 5 6 [3, ] 2 1 1 mtx1[1,3] 8 mtx1[2,] c(9,5,6)
15. 15. Basic RVariables: ★ Matrices and arrays. 1.2 Basic R variables An array is a vector with N dimensions To create an array use command: array(c(), dim=c()) Examples: array1 = matrix(c(1, 4, 8, 9, 5, 6, 2, 1), dim=c(2,2,2)) 1 4 8 9 5 6 2 1
16. 16. Basic RVariables: ★ Matrices and arrays. 1.2 Basic R variables Arrays also have indexes array1[1,2,1] 4 array1[2,2] c(9,1) 1 4 8 9 5 6 2 1 array1[2,] matrix(1,4,8,9)
17. 17. Basic RVariables: ★ List and dataframes. 1.2 Basic R variables A list is an object object consisting of an ordered collection of other objects as its components Example: test = list(c(1, 4, 8, 9, 5, 6, 2, 1), c(“red”, “blue”), mtx1) To create a list use command: list()
18. 18. Basic RVariables: ★ List and dataframes. 1.2 Basic R variables A dataframe is a list con 4 specific features: To create a data frame use command: data.frame() 1.The components must be vectors (numeric, character, or logical), factors, numeric matrices, lists, or other data frames. 2.Matrices, lists, and data frames provide as many variables to the new data frame as they have columns, elements, or variables, respectively. 3.Numeric vectors, logicals and factors are included as is, and character vectors are coerced to be factors, whose levels are the unique values appearing in the vector. 4.Vector structures appearing as variables of the data frame must all have the same length, and matrix structures must all have the same row size.
19. 19. Basic RVariables: ★ List and dataframes. 1.2 Basic R variables A dataframe can be imported/exported to/from R using: read.table(file) write.table(data.frame, file)
20. 20. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
21. 21. 2. Gallery of R Graphs and Popular Packages Graphs are R functions that produce a graphical output. R functions: Objects with a set of instructions to process some data or to produce a graphical output. name(arguments)
22. 22. 2. Gallery of R Graphs and Popular Packages library("maps") http://rgraphgallery.blogspot.com/
23. 23. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
24. 24. Depends of the package: + Basic package functions: plot() simple plots hist() density plots dotchart() simple dotplots barplot() simple bar graphs pie() simple pie graphs boxplot() boxplot graphs 2.1 Basic Graphs
25. 25. 2.1 Basic Graphs Data for these examples: http://data.kew.org/cvalues/ Solanaceae file: data001_genome_size.csv
26. 26. 0 20 40 60 80 100 0500010000150002000025000 Genome Size for Solanaceae chromosome number genomesize(Mb) plot() simple plots 2.1 Basic Graphs plot(plant_genome_sizes\$chromosome_number, plant_genome_sizes\$genome_size, pch=19, xlab="chromosome number", ylab="genome size (Mb)", xlim=c(0,100), main="Genome Size for Solanaceae")
27. 27. Histogram for Solanaceae Plant Genome Size genome size Frequency 0 5000 10000 15000 20000 25000 05101520253035 hist() density plots 2.1 Basic Graphs hist(plant_genome_sizes\$genome_size, breaks=c(100), col=c("black"), xlab="genome size", main="Histogram for Solanaceae Plant Genome Size")
28. 28. parviflora inflata violacea altiplana integrifolia occidentalis axillaris reitzii saxicola bonjardinensis kleinii scheideana helianthemoides variabilis pubescens alpicola bajeensis interior littoralis riograndensis parodii guarapuavensis mantiqueirensis exserta hybrida 500 1000 1500 2000 Petunia species genome size Genome Size (Mb) dotchart() simple dotplots 2.1 Basic Graphs petunia_sizes = plant_genome_sizes[plant_genome_sizes\$genus == "Petunia",] dotchart(petunia_sizes\$genome_size, labels=petunia_sizes\$species, xlab="Genome Size (Mb)", xlim=c(500,2000), main="Petunia species genome size")
29. 29. Atropa Calibrachoa Capsicum Cyphomandra Datura Hyoscyamus Lycium Lycopersicon Nicotiana Petunia Solanum Withania Solanaceae genome sizes by Genus 0 2000 4000 6000 8000 10000 barplot() simple bar graphs 2.1 Basic Graphs genome_size_by_genus = aggregate(plant_genome_sizes\$genome_size, by=list(plant_genome_sizes\$genus), FUN=mean) barplot(genome_size_by_genus\$x, names.arg=genome_size_by_genus\$Group.1, las=2, cex.names=0.5, col="black", main="Solanaceae genome sizes by Genus")
30. 30. Atropa Calibrachoa Capsicum Cyphomandra Datura Hyoscyamus Lycium Lycopersicon Nicotiana Petunia Solanum Withania Species Percentage by Genus pie() simple pie graphs 2.1 Basic Graphs species_count = table(plant_genome_sizes\$genus) pie(species_count, radius=1, init.angle=90, col=rainbow(12), main="Species Percentage by Genus")
31. 31. Atropa Calibrachoa Capsicum Cyphomandra Datura Hyoscyamus Lycium Lycopersicon Nicotiana Petunia Solanum Withania 0 5000 10000 15000 20000 25000 Genome Size distribution by Genus boxplot() boxplot graphs 2.1 Basic Graphs by_genus = split(plant_genome_sizes\$genome_size, plant_genome_sizes\$genus) boxplot(by_genus, las=2, main="Genome Size distribution by Genus", col=c("red", "green", "green", "green", "green", "blue", "blue", "green", "blue", "green", "red", "blue"), cex.axis=0.6)
32. 32. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
33. 33. 2.2 Gplots and ggplot2 Gplots is an R package with extra tools for graphs
34. 34. Atropa Calibrachoa Capsicum Cyphomandra Datura Hyoscyamus Lycium Lycopersicon Nicotiana Petunia Solanum Withania 0 5000 10000 15000 20000 25000 Genome Size distribution by Genus n=1 n=18 n=12 n=11 n=4 n=3 n=4 n=9 n=55 n=25 n=39 n=1 2.2 Gplots and ggplot2 Gplots is an R package with extra tools for graphs: • balloonplot() • bandplot() • barplot2() and boxplot2() • hist2d() • overplot() ... boxplot2(by_genus, las=2, main="Genome Size distribution by Genus", col=c("red", "green", "green", "green", "green", "blue", "blue", "green", "blue", "green", "red", "blue"), cex.axis=0.6, top=T)
35. 35. 2.2 Gplots and ggplot2 Gplots is an R package with extra tools for graphs: • balloonplot() • bandplot() • barplot2() and boxplot2() • hist2d() • overplot() ... genome_size_by_genus_sd = aggregate(plant_genome_sizes \$genome_size, by=list(plant_genome_sizes\$genus), FUN=sd) barplot2(genome_size_by_genus\$x, names.arg=genome_size_by_genus \$Group.1, las=2, cex.names=0.5, col="black", main="Solanaceae genome sizes by Genus", ci.l=genome_size_by_genus\$x - genome_size_by_genus_sd\$x, ci.u=genome_size_by_genus\$x + genome_size_by_genus_sd\$x, plot.ci=T, ylim=c(0,20000)) Atropa Calibrachoa Capsicum Cyphomandra Datura Hyoscyamus Lycium Lycopersicon Nicotiana Petunia Solanum Withania Solanaceae genome sizes by Genus 0 5000 10000 15000 20000
36. 36. 2.2 Gplots and ggplot2 Ggplot2 is an R package with grammar tools for graphs
37. 37. 0e+00 2e−04 4e−04 6e−04 0 5000 10000 15000 20000 25000 genome size density poly Diploid Tetraploid Hexaploid Genome Size density for Solanaceae 2.2 Gplots and ggplot2 Ggplot2 is an R package with grammar tools for graphs plant_genome_sizes\$poly = factor(plant_genome_sizes\$polyploidy, levels=c(2,4,6), labels=c("Diploid", "Tetraploid", "Hexaploid")) qplot(plant_genome_sizes\$genome_size, data=plant_genome_sizes, geom="density", main="Genome Size density for Solanaceae", fill=poly, alpha=I(.5), xlab="genome size")
38. 38. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
39. 39. 2.3 Corrplot corrplot is an R package for visualization of correlation matrix
40. 40. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
41. 41. 2.4 Ape ape is an R package for analysis of phylogenetic and evolution http://www.r-phylo.org/wiki/Main_Page
42. 42. 2.4 Ape phylog is an R package for tree manipulation
43. 43. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
44. 44. Graphical procedures step by step: 1) Enable Graphical Device (X11/QuartzWindows/ by default) 2) Global graphical parameters for the graphical device 3) High level plot function 4) Low level plot function 3. Steps and functions
45. 45. Graphical procedures step by step: 1) Enable Graphical Device bmp(), tiff(), jpeg(), png(), postscript(), pdf(). 2) Global graphical parameters for the graphical device par() 3) High level plot function plot(), hist(), dotchart(), barplot(), pie()... 4) Low level plot function legend(), points(), axis(), text(), mtext()... 3. Steps and functions
46. 46. 2) Global graphical parameters for the graphical device par() 3. Steps and functions Text and Symbol Size Plotting Symbols Lines Colors Fonts Margins and Graph Size http://www.statmethods.net/advgraphs/parameters.html
47. 47. 2) Global graphical parameters for the graphical device par() 3. Steps and functions Margins and Graph Size http://rgraphics.limnology.wisc.edu/rmargins_sf.php Margins: par(mar=c(b,l,t,r)) Outer margins: par(omar=c(b,l,t,r)) b = bottom l = left t = top r = right
48. 48. 2) Global graphical parameters for the graphical device par() 3. Steps and functions Multiple graphs http://rgraphics.limnology.wisc.edu/rmargins_mfcol.php Multiple plots: par(mfcol=(x,y)) x = x_columns y = y_rows
49. 49. 4) Low level plot function legend(), points(), axis(), text(), mtext()... 3. Steps and functions http://www.statmethods.net/advgraphs/axes.html Titles Text Annotations Axes Legend Reference Lines Points Atropa Calibrachoa Capsicum Cyphomandra Datura Hyoscyamus Lycium Lycopersicon Nicotiana Petunia Solanum Withania 0 5000 10000 15000 20000 25000 Genome Size distribution by Genus
50. 50. Atropa Calibrachoa Capsicum Cyphomandra Datura Hyoscyamus Lycium Lycopersicon Nicotiana Petunia Solanum Withania 0 5000 10000 15000 20000 25000 Genome Size distribution by Genus Only Diploids Diploids and Tetraploids From Diploids to Hexaploids 4) Low level plot function legend() 3. Steps and functions Atropa Calibrachoa Capsicum Cyphomandra Datura Hyoscyamus Lycium Lycopersicon Nicotiana Petunia Solanum Withania 0 5000 10000 15000 20000 25000 Genome Size distribution by Genus legend(8,23000, legend=c("Only Diploids", "Diploids and Tetraploids", "From Diploids to Hexaploids"), fill=c("green", "blue", "red"))
51. 51. Graphs with R: 1. Introduction to R 1.1. R Software and documentation 1.2. Basic R variables 2. Gallery of R Graphs and Popular Packages 2.1. Basic graphs 2.2. Gplots and ggplot2 (expanding graphs) 2.3. Corrplot (correlation matrices) 2.4. Ape (phylogenies) 3. Steps and Functions. 4. Examples
52. 52. NbC25469554g0001 NbC25730842g0001 NbC26298068g0003 NbS00000194g0006 NbS00000341g0006 NbS00000565g0004 NbS00001525g0108 NbS00001801g0009 NbS00002670g0014 NbS00002765g0028 Gene Expression 0 2 4 6 8 10 12 14 EV10 EV21 TS10 TS21 Example I: Gene expression File: data002_gene_expression.tab 4. Examples
53. 53. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) 4. Examples 0) Data load and preparation data.frame matrix
54. 54. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(gene_exp) 4. Examples 1) first plot Problem: Grouped by conditions, no by gene.
55. 55. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(t(gene_exp)) 4. Examples 1) first plot Problem: Grouped by conditions, no by gene. Solution: transpose the matrix with t()
56. 56. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(t(gene_exp)) 4. Examples 2) second plot Problem: Gene expression is stack.
57. 57. Problem: Gene expression is stack. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(t(gene_exp), beside=T) 4. Examples Solution: use beside=T argument in the barplot() function 2) second plot
58. 58. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(t(gene_exp), beside=T) 4. Examples 3) third plot Problem: Wrong limits for the y axis.
59. 59. Problem: Wrong limits for the y axis. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(t(gene_exp), beside=T, ylim=c(0,15)) 4. Examples Solution: use ylim=c(0,15) argument in the barplot() function 3) third plot
60. 60. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(t(gene_exp), beside=T) 4. Examples 4) forth plot Problem: No labels for any axis.
61. 61. Problem: No labels for any axis. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, xlab="Gene Name") 4. Examples Solution: use ylab=”Expression (FPKM)”, names.arg=data002_gene_express ion\$gene_short_name and xlab=”Gene Names”, arguments in the barplot() function 4) forth plot
62. 62. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, xlab="Gene Name") 4. Examples 5) fifth plot Problem: Names in the x axis are too big.
63. 63. Problem: Names in the x axis are too big. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, xlab="Gene Name", las=2) 4. Examples Solution: use las=2, argument in the barplot() function 5) fifth plot
64. 64. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, xlab="Gene Name", las=2) 4. Examples 6) sixth plot Problem: Names are incomplete (margin).
65. 65. Problem: Names are incomplete (margin). Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >par(oma=c(8,0,0,0)) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, xlab="Gene Name", las=2) 4. Examples Solution: change margins with par(oma=c(8,0,0,0) 6) sixth plot
66. 66. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >par(oma=c(8,0,0,0)) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, xlab="Gene Name", las=2) 4. Examples 7) seventh plot Problem: Gene name label is missplaced.
67. 67. Problem: Gene name label is missplaced. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >par(oma=c(8,0,0,0)) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, las=2) >mtext("Gene Name", 1, 10) 4. Examples Solution: Don’t use xlab= argument. Use mtext() function instead placing the label in the outer margin 7) seventh plot
68. 68. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >par(oma=c(8,0,0,0)) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, las=2) >mtext("Gene Name", 1, 10) 4. Examples 8) eighth plot Problem: No colors, no title
69. 69. Problem: No colors, no title Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >par(oma=c(8,0,0,0)) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, las=2, col=c("green", "lightgreen", "blue", "lightblue"), main="Gene Expression for TS treatment") >mtext("Gene Name", 1, 10) 4. Examples Solution: use col= and main= arguments to set up a color and a title 8) eighth plot
70. 70. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >par(oma=c(8,0,0,0)) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, las=2, col=c("green", "lightgreen", "blue", "lightblue"), main="Gene Expression for TS treatment") >mtext("Gene Name", 1, 10) 4. Examples 9) ninth plot Problem: No legend
71. 71. Problem: No legend Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >par(oma=c(8,0,0,0)) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, las=2, col=c("green", "lightgreen", "blue", "lightblue"), main="Gene Expression for TS treatment") >mtext("Gene Name", 1, 10) >legend(40,13,legend=c("EV10", "EV21", "TS10", "TS21"), fill=c("green", "lightgreen", "blue", "lightblue")) 4. Examples Solution: use legend() function 9) ninth plot
72. 72. Example I: Gene expression >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) >par(oma=c(8,0,0,0)) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, las=2, col=c("green", "lightgreen", "blue", "lightblue"), main="Gene Expression for TS treatment") >mtext("Gene Name", 1, 10) >legend(40,13,legend=c("EV10", "EV21", "TS10", "TS21"), fill=c("green", "lightgreen", "blue", "lightblue")) 4. Examples 10) tenth plot
73. 73. 1) ENABLE GRAPHICAL DEVICE 2) GLOBAL GRAPHICAL PARAMS. 3) HIGH-LEVEL PLOTTING COMMAND 4) LOW-LEVEL PLOTTING COMMAND 4. Examples >data002_gene_expression <= read.delim("~/ Desktop/R_Class_Exercises/ data002_gene_expression.tab") >gene_exp = as.matrix(data002_gene_expression[,2:5]) ## Default graphical device >par(oma=c(8,0,0,0)) >barplot(t(gene_exp), beside=T, ylim=c(0,15), ylab="Expression (FPKM)", names.arg=data002_gene_expression \$gene_short_name, las=2, col=c("green", "lightgreen", "blue", "lightblue"), main="Gene Expression for TS treatment") >mtext("Gene Name", 1, 10) >legend(40,13,legend=c("EV10", "EV21", "TS10", "TS21"), fill=c("green", "lightgreen", "blue", "lightblue")) Example I: Gene expression
74. 74. Example II:Multiple graphs File: data001_genome_size.csv 4. Examples
75. 75. Example II:Multiple graphs File: data001_genome_size.csv 4. Examples
76. 76. >par(oma=c(2,2,0,0), mar=c(6,5,6,2)) >layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE)) >plant_genome_sizes <- read.delim("~/Desktop/R_Class_Exercises/data001_genome_size.csv") >genome_size_by_genus = aggregate(plant_genome_sizes\$genome_size, by=list(plant_genome_sizes\$genus), FUN=mean) >barplot(genome_size_by_genus\$x, names.arg=genome_size_by_genus\$Group.1, las=2, cex.names=1, col="black", main="Solanaceae genome sizes by Genus") >mtext("Genome Size (Mb)", 2, 4) species_count = table(plant_genome_sizes\$genus) >pie(species_count, radius=1, init.angle=90, col=rainbow(12), main="Species Percentage by Genus") >library("gplots") >by_genus = split(plant_genome_sizes\$genome_size, plant_genome_sizes\$genus) >boxplot2(by_genus, las=2, main="Genome Size distribution by Genus", col=c("red", "green", "green", "green", "green", "blue", "blue", "green", "blue", "green", "red", "blue"), cex.axis=1, top=T) >legend(8,23000, legend=c("Only Diploids", "Diploids and Tetraploids", "From Diploids to Hexaploids"), fill=c("green", "blue", "red")) >mtext("Genome Size (Mb)", 2, 4) Example II:Multiple graphs File: data001_genome_size.csv 4. Examples