NASA Research & Research Missions: Applications for Space Weather Forecasting

1,582 views

Published on

Michael Hesse, 2010 American Astronautical Society Goddard Memorial Symposium

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,582
On SlideShare
0
From Embeds
0
Number of Embeds
51
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

NASA Research & Research Missions: Applications for Space Weather Forecasting

  1. 1. NASA Research & Research Missions: <br />Applications for Space Weather Forecasting<br />Michael Hesse<br />Chief, Space Weather Laboratory<br />NASA GSFC<br />48th Robert H. Goddard Memorial Symposium<br />March 10, 2010<br />
  2. 2. Challenge Group 1<br /><ul><li>Understand solar eruptions
  3. 3. Observe solar eruptions
  4. 4. Understand their evolution in interplanetary space</li></li></ul><li>Present Missions: SOHO<br /><ul><li>Launch Dec. 2, 1995
  5. 5. Instruments operating normally (almost)
  6. 6. Current baseline mission (“BOGART”) includes:</li></ul> -Transforming into supporting solar observatory<br />-Coronal imager<br />-Solar energetic particles for forecasting<br />-Solar wind data<br />-3-4h/day RT coverage<br />
  7. 7. Present Missions: STEREO<br /><ul><li>Launch Oct. 25, 2006
  8. 8. Instruments operating normally
  9. 9. Providing beacon data
  10. 10. At 2015 at opposite side of Sun</li></ul>Beacon (space weather) data – available ‘immediately’<br />SECCHI: ~7 256 X 256 images every hour <br /> IMPACT: 10 sec aves of B, 1 min aves solar wind moments and selected SEP fluxes<br /> PLASTIC: 1 minute resolution selected moments and fluxes<br /> SWAVES: 1 minute summaries of alternate frequencies (0.1-16 MHz)<br />
  11. 11. STEREO Orbits<br />4 yr.<br />3 yr.<br />Ahead @ +22o/year<br />2 yr.<br />1 yr.<br />Sun<br />Sun<br />Earth<br />1yr.<br />Ahead<br />Behind @ -22o/year<br />Earth<br />2yr.<br />Behind<br />3 yr.<br />4 yr.<br />Heliocentric Inertial Coordinates<br />(Ecliptic Plane Projection)<br />Geocentric Solar Ecliptic Coordinates<br />Fixed Earth-Sun Line<br />(Ecliptic Plane Projection)<br />
  12. 12. STEREO: Advantage of Perspective<br />STEREO Behind<br />STEREO Ahead<br />SOHO, SDO<br />
  13. 13. STEREO: Advantage of Perspective – <br />SW Prediction<br />
  14. 14. Future Missions: Solar Dynamics Observatory<br /><ul><li>SDO launched February 23, 2010
  15. 15. Inclined geosynchronous orbit
  16. 16. Continuous 150Mbps downlink.
  17. 17. Dedicated ground station.
  18. 18. SWx data with approximate 15min delay
  19. 19. Five year prime mission
  20. 20. Operations starting in April 2010</li></li></ul><li>SDO Space Weather Data<br /><ul><li>EUV Variability Experiment Space Weather Goals:
  21. 21. Ionospheric disturbance nowcasting (XUV/EUV flare response)
  22. 22. Input for GAIM (Global Assimilative Ionospheric Model)
  23. 23. Input for SOLAR2000 (solar irradiance model), for operational atmospheric, ionospheric, and neutral thermospheric wind models
  24. 24. First-ever near-realtime XUV and EUV flare monitor
  25. 25. Atmospheric Imaging Assembly Space Weather Goals:
  26. 26. Irradiance-calibrated images in 8 EUV/X-ray wavelengths
  27. 27. Quicklook data (1kx1k images, movies of each wavelength covering past hour & day.)
  28. 28. Helioseismic Magnetic Imager Space Weather Goals:
  29. 29. Line of sight magnetograms every 50 sec
  30. 30. Vector magnetograms every 10 min
  31. 31. Essential products to drive models
  32. 32. Far-side images, active region emergence</li></li></ul><li>Future Missions: Solar Orbiter<br /><ul><li>ESA mission with NASA contributions
  33. 33. Elliptical orbit around the Sun with perihelion as low as 0.23 AU and with increasing inclination up to more than 30° with respect to the solar equator.
  34. 34. Visible, extreme ultra violet, X-rays imaging, in situ plasma and fields
  35. 35. NASA: EUV spectrometer (SWRI), Heliospheric imager (NRL), Suprathermal ion spectrograph (APL)
  36. 36. Launch tbd</li></li></ul><li>Challenge Group 2<br />Understand the impact solar eruptions have in near Earth space and throughout the heliosphere<br />
  37. 37. Present Missions: ACE<br /><ul><li>Launch Aug. 25, 1997
  38. 38. Prime Solar Wind information source
  39. 39. Fuel reserves until 2017 or 2018
  40. 40. Almost full RT coverage
  41. 41. RT plasma data limitations</li></li></ul><li>Future Missions: RBSP<br /><ul><li>Radiation Belt Storm Probes launch date: May 2012
  42. 42. 2 S/C, 5.8RE apogee, 600km perigee, 10 degree inclination
  43. 43. 2 year nominal mission lifetime
  44. 44. The RBSP Space Weather (SW) broadcast will be a transmission like those on ACE and STEREO.
  45. 45. NOAA studying ground station optimization.
  46. 46. Ground processing for SWx products will be provided by receiving organization(s).
  47. 47. Input regarding RT data products requested</li></li></ul><li>Challenge Group 3<br />Develop science models and data drivers that can<br /><ul><li>Predict solar eruptions
  48. 48. Predict their impacts
  49. 49. Predict space environment consequences
  50. 50. Augment the sparse data coverage</li></li></ul><li>Modeling<br /><ul><li>NASA supports the development of space science models, including those with Space Weather applications
  51. 51. Through LWS TR&T program
  52. 52. Models run at CCMC in support of
  53. 53. Forecasting centers
  54. 54. Research
  55. 55. Education
  56. 56. Tool development for NASA missions and space weather interests
  57. 57. Infrastructure development for transition to operation
  58. 58. Collaborations with NSF</li></ul>Community Coordinated Modeling Center at GSFC<br />http://ccmc.gsfc.nasa.gov<br />
  59. 59. ENLIL Heliosphere Model<br />3D MHD equations solved from 21.5rs to 2 AU<br />Input at rotating inner boundary<br />(Coronal Models: WSA, MAS)<br />Output<br />Magnetic field<br />Velocity<br />Density <br />Temperature<br />Two operating modes<br />Ambient solution<br />CME modeling using Cone model approximation<br />D. Odstrcil, NASA/GSFC/GMU<br />
  60. 60. Magnetic connectivity product<br />Based on WSA/ENLIL, input from AFWA<br />
  61. 61. CME Simulation<br />
  62. 62. Solar energetic particle forecasts<br />Solar Energetic Particle<br /> Forecast model <br />(M. Nunez, U. Malaga)<br />Solar Energetic Particle<br /> Forecast model <br />(A. Posner)<br />
  63. 63. Magnetopause Position<br />Quiet magnetosphere<br />Active<br />magnetopause position<br />GOES 11&12<br />geosynchronous. orbit<br />Geosynchronous orbit inside Magnetopause<br />Magnetopause crossinggeosynch. orbit<br />
  64. 64. RBSP Data Source for Assimilative Radiation Belt Model (DREAM) <br />GEO & GPS & Polar Observations<br />Data Assimilation Model<br />Modeled HEO Fluxes<br />Measured HEO Fluxes<br />R. Friedel/LANL<br />
  65. 65. Neutral Atmosphere<br />Heating Rate<br />Drag<br />effects<br />
  66. 66. Innovative Dissemination: iSWA<br />> 180 products iswa.gsfc.nasa.gov<br />
  67. 67. Innovative dissemination: Google Earth<br />
  68. 68. Conclusions<br />NASA SMD missions and priorities are driven by scientific objectives, including the goal to understand Space Weather<br />NASA missions can, do, and will provide substantial and critical space weather information<br />With the growing use of assimilative models, ingestion of NASA-provided data streams can create invaluable input into space science and space weather models<br />NASA is proud of its contributions to real-time Space Weather forecasting, and we look forward to working with the partner agencies in the future.<br />

×