Cansat 2008: University of Michigan Maizesat Final Presentation

3,359 views
3,211 views

Published on

Final presentation by the University of Michigan MaizeSat team at CanSat 2008

http://www.astronautical.org/2008/06/15/cansat-2008-university-of-michigan-maizesat/

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,359
On SlideShare
0
From Embeds
0
Number of Embeds
16
Actions
Shares
0
Downloads
121
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Cansat 2008: University of Michigan Maizesat Final Presentation

    1. 1. Team Maize-Sat The Final Presentation Michael McCloskey, Lynn Yeng Wai Lau, Matthew Tse, Jake Graham, Devin Good, Anne Marinan, and Steven M. Kipus June 15 th , 2008 University of Michigan
    2. 2. Introduction <ul><li>Team roster and roles </li></ul><ul><li>Presentation outline </li></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    3. 3. Team Roster & Roles <ul><li>Mike McCloskey – Payload Engineer </li></ul><ul><li>Devin Good – Electrical Engineer </li></ul><ul><li>Lynn Yeng Wai Lau – Programmer </li></ul><ul><li>Jake Graham – Structural Engineer </li></ul><ul><li>Matthew Tse – Telemetry Engineer </li></ul><ul><li>Anne Marinan – Testing Engineer </li></ul><ul><li>Steven Michael Kipus – Lead Engineer </li></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    4. 4. Team Purpose <ul><li>To execute the NASA project life-cycle: Design, Test, Build and Fly </li></ul><ul><li>To gain experience working on an engineering team </li></ul><ul><li>To win the 2007-2008 CanSat Competition </li></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    5. 5. Presentation Outline <ul><li>Design Overview </li></ul><ul><li>Raw Data Plots </li></ul><ul><li>Processed/Analyzed Data Plots </li></ul><ul><li>Outcome of Flight Ops/Failure Analysis </li></ul><ul><li>Comparison of Actual CONOPS to Planned CONOPS </li></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    6. 6. Design Overview <ul><li>Planned Design </li></ul><ul><li>The Actual Design </li></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    7. 7. Bottom view with inserted components (center of mass located in the middle) Buzzer GPS Circuit Board Modem Battery Pressure Sensor Antenna motor Side view with inserted components Sonar device Planned Design as of CDR Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    8. 8. Planned Design Cont’d Diametric view Front view Holes for parachute strings Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    9. 9. The Actual Design <ul><li>Added two Honeywell absolute pressure sensors as well as two temperature sensors </li></ul><ul><ul><li>Unable to provide a steady 400 mV busline to use as a voltage comparator for the mV output Omega pressure sensor </li></ul></ul><ul><ul><li>Honeywells output ~0.2 - 5 V analogue signal </li></ul></ul><ul><li>Rearranged components </li></ul><ul><ul><li>Failure to 3D model the microcontroller and socket </li></ul></ul><ul><ul><li>Failure to conceptualize and design mounting brackets </li></ul></ul><ul><li>Removed the GPS </li></ul><ul><ul><li>Could not interface with the microchip </li></ul></ul><ul><ul><li>Broke the data logger a week before competition </li></ul></ul><ul><li>Changed then removed the method of onboard data storage </li></ul><ul><ul><li>Planned on using EEPROM to store data </li></ul></ul><ul><ul><li>Decided on using SD data logger for simplicity’s sake </li></ul></ul><ul><li>Changed the flight software (cont’d in later slides) </li></ul><ul><ul><li>Redundant data transmissions were deemed unnecessary </li></ul></ul><ul><ul><li>Decided to base the flight plan on the CanSat being inside or out o the rocket rather than the pressure/altitude readings </li></ul></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    10. 10. Planned Software vs Actual <ul><li>Use GPS to tell CanSat when to release parachute and turn off transmitter </li></ul><ul><li>Transmit every piece of data twice </li></ul><ul><li>We used the Sonar to determine when to release a parachute </li></ul><ul><li>We didn’t transmit data two times </li></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    11. 11. Raw Data Plots <ul><li>Expected Data </li></ul><ul><li>Pressure Sensor Callibration </li></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    12. 12. Sample of Previously Collected Data ÿ PH1: ÿ ÿ808ÿ ÿ PH2: ÿ ÿ812ÿ ÿ Temp1: ÿ ÿ53ÿ ÿ Temp2: ÿ ÿ56ÿ ÿ Sonar: ÿ ÿ99ÿ ÿ PO: ÿ ÿ1021ÿ ÿ PH1: ÿ ÿ808ÿ ÿ PH2: ÿ ÿ812ÿ ÿ Temp1: ÿ ÿ53ÿ ÿ Temp2: ÿ ÿ56ÿ ÿ Sonar: ÿ ÿ122ÿ ÿ PO: ÿ ÿ1021ÿ ÿ PH1: ÿ ÿ807ÿ ÿ PH2: ÿ ÿ812ÿ ÿ Temp1: ÿ ÿ53ÿ ÿ Temp2: ÿ ÿ55ÿ ÿ Sonar: ÿ ÿ143ÿ ÿ PO: ÿ ÿ1021ÿ ÿ PH1: ÿ ÿ807ÿ ÿ PH2: ÿ ÿ812ÿ ÿ Temp1: ÿ ÿ53ÿ ÿ Temp2: ÿ ÿ55ÿ ÿ Sonar: ÿ ÿ138ÿ ÿ PO: ÿ ÿ1021ÿ ÿ PH1: ÿ ÿ807ÿ ÿ PH2: ÿ ÿ812ÿ ÿ Temp1: ÿ ÿ53ÿ ÿ Temp2: ÿ ÿ55ÿ ÿ Sonar: ÿ ÿ137ÿ ÿ PO: ÿ ÿ1021ÿ ÿ PH1: ÿ ÿ807ÿ ÿ PH2: ÿ ÿ812ÿ ÿ Temp1: ÿ ÿ54ÿ ÿ Temp2: ÿ ÿ55ÿ ÿ Sonar: ÿ ÿ134ÿ ÿ PO: ÿ ÿ1021ÿ ÿ PH1: ÿ ÿ807ÿ ÿ PH2: ÿ ÿ812ÿ ÿ Temp1: ÿ ÿ54ÿ ÿ Temp2: ÿ ÿ55ÿ ÿ Sonar: ÿ ÿ133ÿ ÿ PO: ÿ ÿ1021ÿ ÿ PH1: ÿ ÿ808ÿ ÿ Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    13. 13. Calibration of Pressure Sensor Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction 266.0005 872.7052 873 981.7 403.5527 1323.992 863 965.7 675.3977 2215.872 837 934.7 1009.585 3312.288 807 897.7 1537.253 5043.481 765 841.7 2053.331 6736.652 722 789.7 2565.466 8416.883 683 740.7 3162.676 10376.23 641 686.7 3738.461 12265.29 604 637.7 17764.14 58281.3 144 68.7 4468.277 14659.7 556 579.7 13213.86 43352.54 217 157.7 5302.678 17397.24 504 518.7 10216.82 33519.75 296 255.7 6236.583 20461.23 459 456.7 7737.916 25386.86 387 369.7 7226.088 23707.64 412 397.7 6659.054 21847.29 435 430.7 8651.418 28383.92 357 323.7 5848.346 19187.49 470 481.7 10115.92 33188.73 303 259.7 4121.513 13522.02 579 606.7 11274.21 36988.88 266 216.7 2881.632 9454.175 666 711.7 13065.21 42864.85 222 161.7 1537.253 5043.481 769 841.7 15599.22 51178.53 178 103.7 266.0005 872.7052 873 981.7 Altitude (m) Altitude (ft) Output Abs Pressure (mBar) Altitude (m) Altitude (ft) Output Abs Pressure (mBar) Increasing Pressure Decreasing Pressure
    14. 14. Analyzed Calibration of Pressure Sensor Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction 730.946 1948.967 734.9223 1898.697 738.897 1848.678 742.87 1798.909 746.8412 1749.387 750.8106 1700.109 754.7779 1651.072 758.7433 1602.273 762.7065 1553.711 766.6674 1505.382 770.6261 1457.284 774.5823 1409.415 778.536 1361.771 782.4872 1314.352 786.4357 1267.154 790.3814 1220.175 794.3243 1173.413 798.2642 1126.866 802.2012 1080.531 806.135 1034.406 810.0656 988.4896 output from microcontroller Altitude above sealevel (m)
    15. 15. Outcome of Flight Ops/Failure Analysis <ul><li>Launch time was postponed for ~3 hours due to technical malfunctions </li></ul><ul><li>The CanSat flew on a rocket without transmitting any information </li></ul><ul><li>A trace failed which was ultimately responsible for the failure of the flight </li></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    16. 16. Outcome of flight Ops <ul><li>Quasi-Complete Failure </li></ul><ul><ul><li>Cansat was built to correct correct geometric and mass specifications </li></ul></ul><ul><ul><li>Would not have been able to entirely detach parachute </li></ul></ul><ul><ul><ul><li>Parachute release rod was too long and snagged 3 rd string </li></ul></ul></ul><ul><ul><ul><li>The rod was improperly initially secured in place with the strings </li></ul></ul></ul><ul><ul><li>Did not land upright </li></ul></ul><ul><ul><ul><li>Deisgn remained the same even after prior tests showed that the design had a moderate probability of failue </li></ul></ul></ul><ul><ul><ul><li>Fell faster than calculated and broke an end cap off </li></ul></ul></ul><ul><li>Several Design Flaws </li></ul><ul><ul><li>No external on/off switch led to wear on wires and connectors </li></ul></ul><ul><ul><li>We should have known our method of detaching parachute was doomed to failure based on 3D CAD design </li></ul></ul><ul><ul><li>Wires were not neatly tied to components which led to unwanted stresses on strains on components </li></ul></ul><ul><li>The last final failure hurt the worst </li></ul><ul><ul><li>Repeatedly proven and documented success transmitting data while in its operational configuration </li></ul></ul><ul><ul><li>Lack of an external on/off switch led to repeated insertion/removal of cansat shelf </li></ul></ul><ul><ul><ul><li>Sollid strand wire was used at the base of the PCB/SONAR connection </li></ul></ul></ul><ul><ul><ul><li>The SONAR groundand Power wires snapped above the epoxy reinforcement at the point of attachment to the pcb </li></ul></ul></ul><ul><ul><ul><li>Uppon reparing the breaks in the wires, the microcontroller routine became unstable and wouldn’t continuously function </li></ul></ul></ul><ul><ul><ul><li>The microcontroller ultimately failed and the CanSat was launched as a piece of beautifully painted “Ballast” </li></ul></ul></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    17. 17. Failure Analysis <ul><li>The lack of an external switch caused excessive shelf removal cycles which led up to what is believed to be an external resonator malfunction </li></ul><ul><li>The board was tested for continuity between the crystal and the microprocessor and a high impedance was measured </li></ul><ul><li>This mode of failure was preventable </li></ul><ul><ul><li>We had a history of breaking single strand wires </li></ul></ul><ul><ul><li>This PCB had traces fail in the past due to repeated soldering </li></ul></ul><ul><ul><li>In order to rectify the wire breaking problem, we replaced the bulk of the single strand wire to multithread wire </li></ul></ul><ul><ul><li>Matt Tse directly told me that ALL the single stranded wire should be replaced with multistrand wire but I refused out of laziness because I had already reinforced the single stranded wire with epoxy where it was soldered; I did not want to spend the 15 minutes removing cured epoxy from the connected wire/pads </li></ul></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    18. 18. The Culprit Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    19. 19. Comparison of Actual CONOPS to planned CONOPS <ul><li>Launch day was different than anticipated </li></ul><ul><li>Our late arrival was detrimental to the mission </li></ul><ul><li>Plans were to have two people instead of only one </li></ul>Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction
    20. 20. CDR Plans for Launch Day Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction Arrive at Launch Site - 3 hour Ground Station Set up - 60 min CanSat Testing - 30 min Assigned to Launch Window ~ - 15 min Integration with Rocket ~ - 10 min Blastoff!!! 0 CanSat Apogee ~ + 10 sec CanSat Deploys ~ + 12 sec Parachute Deploys ~ + 13 sec Data Collection ~ - 10 min – + 9 min CanSat Recovery ~120 min Pack up Ground Station After CanSat Recovery Data Analysis After CanSat Recovery Final Presentation Following Day
    21. 21. The Actual Launch Day Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction After CanSat Recovery Pack up Ground Station Arrive at Launch Site - 15 minutes Ground Station Set up - 10 min CanSat Massed - 2 min CanSat Testing - 2 min until +50 min CanSat Sonar Wire Breaks + 51 minutes Blastoff Postponed + 1 hour CanSat Sonar Wire Repaired + 1.2 hour Integration with Rocket + 1.5 hour CanSat Begins a Series of Failed Transmissions + 1.6 hour CanSat Makes its Final Transmissions + 2 hour Integration with Rocket #2 + 3 hour Blastoff!!! +3.5 hour Final Presentation Now
    22. 22. More CDR Plans for Launch Day: Action Items Design Overview Raw Data Plots Processed/Analyzed Data Outcome of Flight Ops/Failure Analysis Comparison of Actual CONOPS to Planned CONOPS Introduction Retrieve and save the onboard data Return CanSat to storage and pick-up what’s left +2 hours Begin searching for CanSat Clean up the table +15 minutes Make sure collected data is saved & secure Analyze the GPS data to find landing site of CanSat +10 minutes Begin gathering data from the CanSat Begin gathering data from the CanSat ~0 minutes Power up CanSat and run final tests Hook up hardware and set up the ground antennas -30 minutes Set up computer systems Set up our table -3 hours Person B Person A Time
    23. 23. Conclusion <ul><li>The flight was a failure but the project was a success </li></ul><ul><li>The team purpose was achieved </li></ul><ul><li>U of M advisor says we had one of the best CanSats he’s seen when it was working </li></ul><ul><li>Everybody learned many new skills throughout the project </li></ul>
    24. 24. Thank You Very Much <ul><li>Thank you to all advisors EXCOM for organizing and maintaining this program </li></ul><ul><li>Thank you to the American Astronautical Society, American Institute of Aeronautics and Astronautics, and NASA for orchestrating this competition </li></ul><ul><li>Thank you to all those who came before us </li></ul><ul><li>Thank you to my team which works very hard on this project </li></ul>
    25. 25. Questions and Comments <ul><li>System related? </li></ul><ul><li>Subsystem related? </li></ul><ul><li>Critiques? </li></ul><ul><li>Comments? </li></ul>
    26. 26. Team Maize-Sat The Critical Design Review Michael McCloskey, Lynn Yeng Wai Lau, Matthew Tse, Jake Graham, Devin Good, Anne Marinan, and Steven M. Kipus April 24 , 2008 University of Michigan
    27. 27. Introduction <ul><li>Team roster and roles </li></ul><ul><li>Presentation outline </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve
    28. 28. Team Roster & Roles Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates <ul><li>Mike McCloskey – Payload Engineer </li></ul><ul><li>Devin Good – Electrical Engineer </li></ul><ul><li>Lynn Yeng Wai Lau – Programmer </li></ul><ul><li>Jake Graham – Structural Engineer </li></ul><ul><li>Matthew Tse – Telemetry Engineer </li></ul><ul><li>Anne Marinan – Testing Engineer </li></ul><ul><li>Steven Michael Kipus – Lead Engineer </li></ul>Introduction Presenter: Steve
    29. 29. Presentation Outline <ul><li>CanSat Overview </li></ul><ul><li>Mechanical/Structural Overview </li></ul><ul><li>Electrical Overview </li></ul><ul><li>Flight Software Overview </li></ul><ul><li>Integration and Test Overview </li></ul><ul><li>Ground System Overview </li></ul><ul><li>Mission Operations </li></ul><ul><li>Cost Estimates </li></ul><ul><li>Schedule Overview </li></ul>Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Introduction Presenter: Steve
    30. 30. CanSat Overview <ul><li>Requirements Overview </li></ul><ul><li>Design Overview </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve
    31. 31. Requirements Matrix Presenter: Steve Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates ID Requirement Parameter Metric Compliance Verification Reference SYS-01 Hardware Cost $500 USD for everything Complies Analysis CG3.3 SYS-02 Altitude CanSat deploys at 760m Anticipated Test CG1.0 SYS-03 Body No pre-fabricated CanSat Complies Analysis CG1.0 SYS-04 Descent Time Must descend between 7 minutes and 2.75 minutes after deploying Anticipated Test CG2.6 SYS-05 Descent Rate Downward velocity between 4.6m/s and 1.8m/s Complies Test CG2.1 STR-01 Volume Diameter = 72.39mm Height = 279.4mm Anticipated Test CG2.2 STR-02 Mass 500g Anticipated Test CG2.5 STR-03 Touchdown Must land in predetermined upright position Anticipated Test CG2.10 STR-04 Body No protrusions until deployed from rocket Anticipated Design CG2.1-3 STR-05 Parachute Deployment Must deploy before landing Anticipated Test CG2.9 STR-06 Parachute Release Parachute must release and not cover CanSat Anticipated Test CG2.9 PE-01 Power Sustainability Endurance of 2 hours Anticipated Test CG5.1
    32. 32. Requirements Matrix Presenter: Steve Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates ID Requirement Parameter Metric Compliance Verification Reference TEL-01 Radio Frequency 900 MHz and 2.4 GHz radios Anticipated Design CG2.12 TEL-02 Transmitter Transmitter must turn off after landing Anticipated Anticipated CG2.11 TEL-03 Data Transfer One transmission of altitude every 5 seconds Anticipated Analysis CG2.8 TEL-04 Data Transfer Transmit redundant data Anticipated Test Internal TEL-05 Range Transmit data at least 3 km Anticipated Test Internal CDH-01 Data Processing A microcontroller must be used Complies Design Internal CDH-02 Data Acquisition All data stored onboard Anticipated Test Internal PLD-01 Data Accuracy While descending, record altitude within +-3m Anticipated Test CG2.8 PLD-02 Ground Surface Temperature Measure air temperature at ground level Pending Test CG3.3 Designates bonus requirement Designates Design Driver
    33. 33. Design Overview <ul><li>Structure and Recovery </li></ul><ul><ul><li>Touchdown </li></ul></ul><ul><ul><li>Parachute Release </li></ul></ul><ul><li>Power and Electrical </li></ul><ul><ul><li>Power Sustainability </li></ul></ul><ul><li>Telemetry </li></ul><ul><li>Sensors </li></ul><ul><li>Command and Data </li></ul><ul><ul><li>Data Processing </li></ul></ul><ul><li>Overall </li></ul><ul><ul><li>Cost </li></ul></ul><ul><ul><li>Volume </li></ul></ul><ul><ul><li>Mass </li></ul></ul>Introduction Schedule Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates CanSat Overview Presenter: Steve
    34. 34. Subsystem Interaction Presenter: Steve Introduction Schedule Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates CanSat Overview
    35. 35. <ul><li>Mechanical/Structural Overview </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake <ul><li>Design Consideration </li></ul><ul><li>Summary of PDR Changes </li></ul><ul><li>Results of Preliminary Design/Analysis </li></ul><ul><li>Mechanical/Structural Concept Drawing </li></ul><ul><li>Preliminary Mass Budget </li></ul><ul><li>Recovery System </li></ul><ul><li>Preliminary Test Plan </li></ul>
    36. 36. Competition Requirements Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake Parameter Requirement Compliance Reference Fit in payload section 279.4 mm long 72.39 mm diameter Anticipate to comply Competition guide Landing Land in defined upright position Anticipate to comply Competition guide Mass 500 grams (470 grams – internal) Anticipate to comply Competition guide Descent rate ~1.8 m/s to 4.6 m/s (7 minute total time) Anticipate to comply Competition guide Parachute Detachment Automatic upon landing without covering CanSat Anticipate to comply Competition guide CanSat deployment Automatic due to gravity Anticipate to comply Competition guide
    37. 37. Design Considerations <ul><li>Strong frame to support internal electrical components </li></ul><ul><li>Antenna placement must achieve maximum reception </li></ul><ul><li>Shape must be conducive to landing upright </li></ul><ul><li>Heavy bottom side to ensure upright landing </li></ul><ul><li>Reduce drift to aid in recovery </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake
    38. 38. Structural Design <ul><li>Use strong, lightweight carbon fiber material </li></ul><ul><li>Place antenna on outside of cylinder to achieve better signal </li></ul><ul><li>Cylinder provides rolling ability </li></ul><ul><li>Insert “shelf” to support internal components </li></ul><ul><li>Internal components arranged to achieve low center of mass </li></ul><ul><li>Use parachute with spill hole </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake
    39. 39. Summary of PDR changes <ul><li>Antenna placement </li></ul><ul><ul><li>Swivel allows vertical position upon deployment from rocket </li></ul></ul><ul><li>Decided on parachute design </li></ul><ul><ul><li>Hexagonal with spill hole </li></ul></ul><ul><ul><li>Already available </li></ul></ul><ul><li>Parachute Release System </li></ul><ul><ul><li>Motor pulling string attached to small rod </li></ul></ul><ul><ul><li>More effective </li></ul></ul><ul><ul><li>Sonar device triggers release instead of GPS </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake
    40. 40. CanSat Design Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Diametric view Front view Presenter: Jake Holes for parachute strings
    41. 41. Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates CanSat Design (Cont’d) Bottom view with inserted components (center of mass located in the middle) Buzzer GPS Circuit Board Modem Battery Pressure Sensor Antenna motor Side view with inserted components Presenter: Jake Sonar device
    42. 42. Design (Cont’d): Fasteners Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake <ul><li>Fasteners </li></ul><ul><ul><li>U-bolt for parachute release device </li></ul></ul><ul><ul><li>Standard screws for components </li></ul></ul>Standard screws with cover plate U-bolt
    43. 43. Recovery Devices <ul><li>Visual </li></ul><ul><ul><li>Bright, contrasting streamer and parachute color will provide high visibility </li></ul></ul><ul><ul><li>Parachute: Public Missile Parachute </li></ul></ul><ul><li>Audio </li></ul><ul><ul><li>Loud buzzer sound will be easily heard </li></ul></ul><ul><li>Position </li></ul><ul><ul><li>GPS will send position of CanSat upon landing </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake
    44. 44. Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Parachute Release System Presenter: Jake <ul><li>Parachute released within 1 meter of the ground </li></ul><ul><li>Motor turns upon reaching specified height (known from Sonar Device) </li></ul><ul><li>String pulls rod, releasing parachute strings that are held down by the rod </li></ul><ul><li>Parachute strings enter cylinder through sides and through middle for stability </li></ul>
    45. 45. Parachute Release: Motor Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake <ul><li>Servo </li></ul><ul><ul><li>Manufacturer: Horizon Hobbey/JR </li></ul></ul><ul><ul><li>331 Micro </li></ul></ul><ul><ul><li>30243 g-f mm Torque </li></ul></ul><ul><li>Motor used is taken out of servo shell </li></ul>
    46. 46. Mass Budget Introduction Schedule Overview CanSat Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Mechanical/Structural Overview Presenter: Jake 1.1 10 1 1 1 Transceiver Socket 23.1 10 21 21 1 Transceiver 44.0 10 40 40 1 Antenna 11.0 10 10 10 1 Parachute Release Rod and Connectors 19.8 10 18 18 1 Servo 1.1 10 1 1 1 Boost Converter 1.1 10 1 1 1 Buck Converter 2.2 10 2 2 1 Voltage Regulator 27.5 10 25 25 1 Battery 22.0 10 20 20 1 Circuit Board 24.2 10 22 22 1 GPS 4.4 10 4 4 1 Pressure Sensor 5.5 10 5 5 1 Proximity Detector 1.1 10 1 1 1 Serial Flash Memory 2.2 10 2 2 1 Microcontroller 1.1 10 1 1 1 Microcontroller Socket Net Mass (g) Contingency (%) Subtotal Mass (g) Mass per Unit (g) Quantity Component
    47. 47. Mass Budget Introduction Schedule Overview CanSat Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Mechanical/Structural Overview Presenter: Jake 133.2 - - - - Margin 366.8 - - - - Total with Contingency 50.0 - - - - System Reserve - - 288 - - Subtotals 4.4 10 4 4 1 Buzzer 2.2 10 2 1 2 Resistor 4.4 10 4 1 4 Capacitor 2.2 10 2 1 2 Inductor 1.1 10 1 1 1 Relay 16.5 10 15 1 15 Screws 13.2 10 12 6 2 U Bolts 4.4 10 4 2 2 L Bracket 33.0 10 30 30 1 Shelf and End-Caps 44.0 10 40 40 1 Structure Exterior (Carbon 2.5 Heavy) Net Mass (g) Contingency (%) Subtotal Mass (g) Mass per Unit (g) Quantity Component
    48. 48. Plans for Testing: Structure <ul><li>Structural Integrity </li></ul><ul><ul><li>Drop weighted outer structure from a height around 1m </li></ul></ul><ul><ul><li>Excessive shaking—make sure insides stay intact </li></ul></ul><ul><li>Parachute </li></ul><ul><ul><li>Release 500g mass attached to parachute from known altitude and measure time it takes to fall </li></ul></ul><ul><ul><li>Results: 8.82s from 34.6m  3.92m/s </li></ul></ul><ul><li>Parachute Release </li></ul><ul><ul><li>Install mechanism and test </li></ul></ul><ul><ul><li>Measure parachute release time </li></ul></ul><ul><li>Buzzer </li></ul><ul><ul><li>Turn on inside carbon fiber body and determine range of sound </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake
    49. 49. Plans for Testing: Structure <ul><li>SONAR </li></ul><ul><ul><li>Test functionality and implementation </li></ul></ul><ul><ul><ul><li>Calibrate sensor to determine accuracy and most sensitive range </li></ul></ul></ul><ul><ul><ul><li>Balance CanSat from parachute to ensure center of mass is actually in the center </li></ul></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake
    50. 50. Structural Work to be Completed <ul><li>Build and test design </li></ul><ul><ul><li>Ensure mass is distributed to concentrate center of mass in the middle and on bottom half </li></ul></ul><ul><li>Integrate all electrical components into structure </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake
    51. 51. <ul><li>Electrical Overview </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates <ul><li>Design Considerations </li></ul><ul><li>Summary of PDR </li></ul><ul><li>Electrical System Block Diagram </li></ul><ul><li>Power System Overview </li></ul><ul><li>Preliminary Power Budget </li></ul><ul><li>Communications System Overview </li></ul><ul><li>Processor Selection </li></ul><ul><li>Sensor Selection </li></ul>Presenter: Devin
    52. 52. Electrical Design Considerations and Requirements <ul><li>To provide the CanSat with enough power to run all of its components for at least two hours </li></ul><ul><li>To design a circuit board that will connect all of the components in parallel </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin
    53. 53. Summary of PDR Changes <ul><li>Circuit board completed </li></ul><ul><li>Relay instead of transistors </li></ul><ul><li>Step-Down Converter </li></ul><ul><li>Voltage Level Shifter </li></ul><ul><ul><li>Allows for communication between serial flash and microcontroller </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin
    54. 54. Summary of PDR Changes (Cont’d) <ul><li>Decided to use AC4790-200m transceivers instead of AC4490-200m </li></ul><ul><ul><li>4790 already available to us </li></ul></ul><ul><li>SONAR Range Finder </li></ul><ul><ul><li>More accurate distance measuring for parachute release </li></ul></ul><ul><li>7.4V battery instead of 3.7V battery </li></ul><ul><ul><li>Easier to step down than up </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin
    55. 55. Electrical System Block Diagram Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin KEY Data 3.3V 5V 10V 7.4V
    56. 56. Circuit Board Diagram Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Microcontroller Buzzer Level Shifter Step-up Converter Servo GPS Relay Transceiver Step-up Converter Pressure Sensor Sonar Serial Flash Presenter: Devin
    57. 57. Power/Electrical Components <ul><li>Rechargeable Battery </li></ul><ul><ul><li>Lithium Ion-Polymer 7.4V, 920mAh </li></ul></ul><ul><li>Voltage Converters </li></ul><ul><ul><li>National Semiconductors LM3211 </li></ul></ul><ul><ul><li>National Semiconductors LM3671 </li></ul></ul><ul><li>Circuit Board </li></ul><ul><ul><li>PCB123 </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin
    58. 58. Plans for Testing: Electric <ul><li>Multimeter </li></ul><ul><ul><li>Find out how much voltage and current is used by each part </li></ul></ul><ul><ul><li>Determine if relays work by measuring change in current after switching voltage from low to high (and vice versa) </li></ul></ul><ul><li>Battery and Voltage Converter: </li></ul><ul><ul><li>Run each piece of equipment with battery </li></ul></ul><ul><ul><li>Run the whole routine </li></ul></ul><ul><ul><li>Battery power down </li></ul></ul>Presenter: Devin Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    59. 59. Plans for Testing: Electric (Cont’d) <ul><li>Pressure Sensor : </li></ul><ul><ul><li>Use vacuum chambers to vary pressure </li></ul></ul><ul><ul><li>Obtain different readings and calibrate sensor </li></ul></ul><ul><ul><li>Write code for microcontroller to retrieve data </li></ul></ul><ul><li>GPS : </li></ul><ul><ul><li>Connect the device to a computer </li></ul></ul><ul><ul><li>Collect large amount of data at one position to evaluate accuracy </li></ul></ul><ul><ul><li>2-D plotter to get visual results </li></ul></ul>Presenter: Devin Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    60. 60. Power Source Protection Presenter: Devin Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates <ul><li>Capacitors : </li></ul><ul><ul><li>Helps smooth out the voltage entering each component </li></ul></ul><ul><li>Zener Diode : </li></ul><ul><ul><li>Protects the boost converter </li></ul></ul>
    61. 61. Power Budget: Components Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin Denotes Estimate       10   1 Voltage Converter (90% eff.)         5   1 Voltage Converter (92% eff.) 3.0 15.0 15% 10% 10 13 1 Buzzer 3.5 1.7 15% 100% 5 1.5 1 Pressure sensor 32.9 16.4 15% 100% 3.3 14.3 1 Flash Memory 13.8 69.0 15% 10% 4.8 60 1 Servo 64.4 32.2 15% 100% 5 28 1 Microcontroller 6.9 3.5 15% 100% 5 3 1 Sonar Range Finder 156.4 78.2 15% 100% 5 68 1 Transceiver 161.0 80.5 15% 100% 5 70 1 GPS mAh per cycle Current with contingency (mA) Contingency Duty cycle (% of 2 hours) Running Voltage (V) Current (mA) No. of items Device
    62. 62. Power Budget: CanSat Cycle Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin     Efficiency of voltage converter Running Voltage (V) Duty Cycle Current with Contingency (mAh) mAh per cycle Total current w/ 3.3V component     3.3 100% 16.4 32.9 Total current w/ 5V components   92% 5 85% 288.1 489.8 Total Current With 10V component   90% 10 85% 16.6 28.2 Total current w/ contingency (mA)     ALL   304.7 550.9 Battery power (mAh) 920         Max number of cycles 1.7           Max. allowable duration (hours) 3.3          
    63. 63. Electrical Work to be Completed <ul><li>Test individual components </li></ul><ul><ul><li>Solder-less breadboard </li></ul></ul><ul><ul><li>Multimeter </li></ul></ul><ul><li>Battery endurance tests </li></ul><ul><ul><li>Run entire system until battery depletes </li></ul></ul><ul><li>Order circuit board </li></ul><ul><li>Solder everything to circuit board </li></ul><ul><li>Test circuit board connections </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin
    64. 64. Communication System Overview <ul><li>Requirements </li></ul><ul><li>System Block Diagram </li></ul><ul><li>Modem </li></ul><ul><li>Antenna </li></ul><ul><li>Plans for Testing </li></ul><ul><li>Range Testing Results </li></ul><ul><li>Communications Work to be Completed </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    65. 65. Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt Communication System Requirements Parameter Details Compliance Reference Radio Frequency Must meet FCC regulations for use in 900 MHz and 2.4 GHz frequency bands Anticipate to comply Competition Guidelines Data Transfer Must transfer altitude data to ground station at least every 5 sec Anticipate to comply Competition Guidelines Data Transfer Transfer data every 2 seconds Anticipate to comply Internal Requirement Data Redundancy Transfer the previous data from 2 sec ago in addition to new data Anticipate to comply Internal Requirement Range Transfer data over at least 3 km Anticipate to comply Internal Requirement
    66. 66. Communication System Diagram Modem Antenna Micro-controller Ground Station Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt TTL Waveform Radio Wave
    67. 67. Modem <ul><li>AeroComm AC4790 -200M </li></ul><ul><ul><li>Operates in 902 to 928 MHz ISM band </li></ul></ul><ul><ul><li>Uses Frequency Hopping Spread Spectrum </li></ul></ul><ul><ul><li>Serial Data Rate up to 115.2 kbps </li></ul></ul><ul><ul><li>RF Data rate 76.8kbps </li></ul></ul><ul><ul><li>20-pin connector interface </li></ul></ul><ul><ul><li>MMCX connector to antenna </li></ul></ul><ul><ul><li>Free modem configuration software from AeroComm website </li></ul></ul><ul><ul><li>FCC Certified </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    68. 68. Antenna <ul><li>Nearson S467FL-4-RMM-915 dipole </li></ul><ul><ul><li>2 dBi gain </li></ul></ul><ul><ul><li>5 km range with the AC4790-200m (theoretical) </li></ul></ul><ul><ul><li>Obtained two free samples </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt 182.9mm
    69. 69. Plans for Testing: Communications <ul><li>Establish R/F link </li></ul><ul><li>Determine realistic maximum range </li></ul><ul><li>Range testing (at an open-field) </li></ul><ul><ul><li>Determine bit error rate </li></ul></ul><ul><ul><li>Determine R/F link quality in various terrain </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    70. 70. Range Testing Results Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt <ul><li>Maximum 1.2 km achieved at low altitude </li></ul><ul><li>Problems </li></ul><ul><ul><li>Interference from hills, street lamps, cars, trees, and other obstructions </li></ul></ul><ul><ul><li>Low laptop battery </li></ul></ul>
    71. 71. Communications Work to be Completed <ul><li>Range and terrain testing </li></ul><ul><li>Assessing link quality </li></ul><ul><li>Integration with micro-controller </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    72. 72. <ul><ul><li>Record and store data from other devices </li></ul></ul><ul><ul><li>Transmit measurements to other devices in an organized manner </li></ul></ul><ul><ul><li>Microcontrollers: Reduced size, power consumption and cost compared to any other form of control </li></ul></ul>Command and Data / Processor Selection Presenter: Lynn Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    73. 73. Specifications of Microchip PIC18F4685 <ul><li>Enhanced Addressable USART module </li></ul><ul><li>- Supports RS-485, RS-232, LIN 1.3, TTL </li></ul><ul><li>- Auto-Baud Detect </li></ul><ul><li>MSSP module and I²C Master and Slave modes </li></ul><ul><li>11-Channel 10-bit Analog-to-Digital modules </li></ul>Presenter: Lynn Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    74. 74. Microcontroller Connections Presenter: Lynn Proximity Detector (3) Vout GPS GlobalSat EM-406 (25, 26) TX, RX Transceiver AC 4790 (35, 36) TX, RX Power Supply (11,12) GND, Vcc Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Pressure Sensor PX70 (4) Vout Relay (2) RA0 Transceiver AC 4790 (5, 6) AN3, external clock Serial Flash via Level Shifter (18, 21, 23, 24) Serial Clock, PSP2, SDI, SDO Step-up Converter (34) AN8 Power Supply (31, 32) GND, Vcc Transceiver AC 4790 (19, 20) PSP0, PSP1
    75. 75. Sensory Requirements Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Electrical Overview Presenter: Mike Parameter Requirement Compliance Reference Sample Data Once Every 5 Seconds Anticipate to comply Competition guide Sample Data Once Every 2 Seconds Anticipate to comply Internal Requirement Data Accuracy Within 3 meters Anticipate to comply Competition Committee Redundancy Implement A Backup to The GPS Anticipate to comply Internal Requirement Proximity Detection Within 1 meter of ground Anticipate to comply Internal Requirement
    76. 76. Primary Sensor: GPS <ul><li>Primary method of obtaining altitude readings </li></ul><ul><li>Optimal unit for obtaining this data </li></ul><ul><ul><li>Simplicity </li></ul></ul><ul><ul><li>Compatibility with other subsystems </li></ul></ul><ul><li>GlobalSat EM-406 </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Electrical Overview Presenter: Mike 30mmx30mmx10mm
    77. 77. Secondary Sensor: Pressure Sensor <ul><li>Secondary method of obtaining the altitude readings </li></ul><ul><li>Pressure sensor is accurate </li></ul><ul><li>Fits well with our current design </li></ul><ul><li>Omega PX71030AV </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Electrical Overview Presenter: Mike 9.14 mm x 5.84 mm x 19.81 mm
    78. 78. Proximity Detector: SONAR <ul><li>Our method to know our position above the ground so that the parachute can be deployed within 1 meter </li></ul><ul><ul><li>Wide beam of detection </li></ul></ul><ul><li>LV-MaxSonar®-EZ1™ </li></ul><ul><ul><li>Can detect the ground </li></ul></ul><ul><ul><li>to an accuracy of ~0.03m </li></ul></ul><ul><ul><li>up to a distance of 6m </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Electrical Overview Presenter: Mike
    79. 79. <ul><li>Flight Software Overview </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates <ul><li>Changes since PDR </li></ul><ul><li>Design considerations and overview </li></ul><ul><li>Programming integration plan </li></ul><ul><li>Preliminary test plan </li></ul>Presenter: Lynn
    80. 80. Flight software requirements Presenter: Lynn Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Internal requirement Compliant through microcontroller, sonar, motor Release parachute Recovery Internal requirement Compliant through microcontroller and serial flash Data stored onboard Relevant and redundant data storage Internal requirement built upon CanSat competition guide Compliant through modem and microcontroller Altitude transmitted to the ground every 2 seconds Data transmission CanSat competition guide Compliant through GPS, pressure sensor and sonar. Measurements of altitude Measurements Reference Compliance Requirement Parameter
    81. 81. <ul><li>Summary of Changes Since PDR </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Lynn <ul><li>Taken into account altitude tolerance </li></ul><ul><li>Updated data budget </li></ul><ul><li>Different serial flash manufacturer </li></ul><ul><li>Use SONAR for parachute release instead of GPS data </li></ul>
    82. 82. Flight Software Overview Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Lynn
    83. 83. Data Budget Presenter: Lynn Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Device Size per Sample (Bits) Sample frequency Sample Time (seconds) Total Size (KBytes) GPS Data- Numbers 512 2 every 2 seconds 1500 96 GPS Data- Characters 28*8 2 every 2 seconds 1500 7.5 GPS Identifiers 64 2 every 2 seconds 1500 12 Counters 48 2 every 2 seconds 1500 4.5 Pressure sensor Identifier 8 Pressure sensor 128 2 every 2 seconds 1500 24 Total Memory Needed 144 KBytes
    84. 84. Onboard Data Storage <ul><li>Serial Flash </li></ul><ul><ul><li>SST Electronics SST25VF040B </li></ul></ul><ul><ul><li>512 KB storage </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Lynn
    85. 85. Programming Language Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Lynn <ul><li>We chose to use C to program our Microcontroller </li></ul><ul><li>Simple </li></ul><ul><li>All-purpose </li></ul><ul><li>Widely Employed </li></ul><ul><li>Many tutorials available and easily </li></ul><ul><li>accessible </li></ul>
    86. 86. Microcontroller Software PICkit 2 Starter Kit <ul><li>Low cost, easy to use interface for programming microcontroller </li></ul><ul><li>Comes with Microchip’s MPLAB IDE software that programs, assembles, compiles using C </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Lynn
    87. 87. Plans for Testing: Flight Software <ul><li>Microcontroller : </li></ul><ul><ul><li>Try a basic program </li></ul></ul><ul><ul><li>Write procedures for components individually </li></ul></ul><ul><ul><li>Integrate procedures for flight software </li></ul></ul><ul><ul><li>Send data to transceiver </li></ul></ul><ul><ul><li>Oscilloscope—see if data is being transferred </li></ul></ul><ul><li>Serial Flash : </li></ul><ul><ul><li>Write data onto component </li></ul></ul><ul><ul><li>Connect serial flash and microcontroller to computer to retrieve data </li></ul></ul>Presenter: Lynn Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    88. 88. Flight Software Future Work <ul><li>Continue programming the microcontroller </li></ul><ul><li>Integrate the microcontroller with the GPS, Sonar, Pressure Sensor, Serial Flash, Modem </li></ul><ul><li>Develop a code where the CanSat ignores the proximity detector’s signals while it’s in the rocket but is triggered to release the parachute when it approaches the ground </li></ul>Presenter: Lynn Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    89. 89. <ul><li>Integration and Test Overviews </li></ul><ul><li>Design considerations </li></ul><ul><li>Changes since PDR </li></ul><ul><li>Preliminary integration plan </li></ul><ul><li>Preliminary test plan </li></ul>Presenter: Annie Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    90. 90. Design Considerations <ul><li>Basic Design </li></ul><ul><ul><li>Sturdy Structure </li></ul></ul><ul><ul><li>Land upright </li></ul></ul><ul><ul><li>Deploy Parachute </li></ul></ul><ul><li>Technical Systems </li></ul><ul><ul><li>Components work together at the proper times to get desired results </li></ul></ul>Presenter: Annie Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    91. 91. Summary of PDR Changes <ul><li>No test launch </li></ul><ul><li>No computer simulations for electric systems </li></ul><ul><li>Reevaluated individual tests </li></ul><ul><ul><li>GPS </li></ul></ul><ul><ul><li>Pressure Sensor </li></ul></ul><ul><li>Completed tests </li></ul><ul><ul><li>Transceiver </li></ul></ul><ul><ul><li>Parachute </li></ul></ul>Presenter: Annie Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    92. 92. Integration Basic Plan <ul><li>Obtain parts </li></ul><ul><li>Unit Testing – test each component individually </li></ul><ul><li>Subsystem Verification – connect parts and test within each subsystem </li></ul><ul><li>System Validation – combine all the subsystems and test CanSat </li></ul>Presenter: Annie Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    93. 93. Unit Testing <ul><li>Antenna/Transceiver (done) </li></ul><ul><li>Parachute falling speed test (done) </li></ul><ul><li>Parachute Release </li></ul><ul><li>Sonar </li></ul><ul><li>GPS </li></ul><ul><li>Pressure Sensor </li></ul><ul><li>Buzzer </li></ul><ul><li>Serial Flash </li></ul><ul><li>Microcontroller </li></ul>Presenter: Annie Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    94. 94. Subsystems Testing <ul><li>Flight Software </li></ul><ul><ul><li>Microcontroller and sensors </li></ul></ul><ul><ul><li>Microcontroller to modem/parachute/data storage </li></ul></ul><ul><li>Power and Electrical </li></ul><ul><ul><li>Battery to microcontroller, modem, etc </li></ul></ul><ul><ul><li>Through voltage converter/transistors </li></ul></ul><ul><li>Structure </li></ul><ul><ul><li>Outer shell and shelf inside </li></ul></ul><ul><ul><li>Parachute </li></ul></ul>Presenter: Annie Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    95. 95. System Validation <ul><li>CanSat system </li></ul><ul><ul><li>Circuit Board </li></ul></ul><ul><ul><li>Attach components to shelf and shell </li></ul></ul><ul><ul><li>Parachute </li></ul></ul><ul><li>Go/No Go Demonstration </li></ul>Presenter: Annie Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates
    96. 96. Integration Work to be Completed <ul><li>Test individual components </li></ul><ul><ul><li>As parts arrive </li></ul></ul><ul><ul><li>Each with microcontroller </li></ul></ul><ul><li>Get working code to aid in testing </li></ul><ul><ul><li>Send and receive data </li></ul></ul><ul><ul><li>Power commands </li></ul></ul><ul><li>Connect circuit board </li></ul><ul><ul><li>Clean connections </li></ul></ul><ul><ul><li>Run power tests </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Annie
    97. 97. Integration Work to be Completed <ul><li>Build structure and integrate parts </li></ul><ul><ul><li>Shelf </li></ul></ul><ul><ul><li>Structure soundness tests </li></ul></ul><ul><li>Go/No Go Demonstration (May) </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Annie
    98. 98. <ul><li>Ground System Overview </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates <ul><ul><li>Design Considerations and Requirements </li></ul></ul><ul><ul><li>Changes Since PDR </li></ul></ul><ul><ul><li>Ground System Block Diagram </li></ul></ul><ul><ul><li>Ground Hardware Selection </li></ul></ul><ul><ul><li>Ground Software Overview </li></ul></ul><ul><ul><li>Plans for Testing </li></ul></ul><ul><ul><li>Work to Be Completed </li></ul></ul>Presenter: Matt
    99. 99. Ground System Requirements <ul><li>No formal competition requirements </li></ul><ul><li>Make sure our antenna gives us enough range to receive data transmissions from the CanSat </li></ul><ul><ul><li>Raise antenna higher above ground </li></ul></ul><ul><li>Receive altitude data at least every 5 sec </li></ul><ul><li>Be able to interpret the transmissions as “useful” altitude data </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    100. 100. Summary of PDR Changes <ul><li>Hardware list updated </li></ul><ul><li>Will use Excel for data processing and analysis </li></ul><ul><li>Will use PVC pipe to raise dipole antenna higher above ground </li></ul><ul><li>Yagi antenna available for use </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    101. 101. Ground System Diagram Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt Antenna Modem Computer Development Board CanSat Power Source Analysis Software Radio Wave Waveform TTL RS-232 Radio Wave Information Power
    102. 102. Ground System Hardware <ul><li>Modem </li></ul><ul><li>20-pin mating connectors for modem </li></ul><ul><li>AeroComm development board </li></ul><ul><li>Dipole antenna </li></ul><ul><li>USB cable </li></ul><ul><li>Battery charger </li></ul><ul><li>Computer </li></ul><ul><li>PVC pipe </li></ul><ul><li>Multi-meter </li></ul><ul><li>Screwdriver </li></ul><ul><li>Screws </li></ul><ul><li>Soldering Iron </li></ul><ul><li>Solder </li></ul><ul><li>Misc. cables and wires for power </li></ul><ul><li>Wire cutters </li></ul><ul><li>Pliers </li></ul><ul><li>Pic starter kit </li></ul><ul><li>Banana cables </li></ul><ul><li>Alligator clips </li></ul><ul><li>Scissors </li></ul><ul><li>Fasteners </li></ul><ul><li>Surge protector </li></ul><ul><li>Duck tape </li></ul><ul><li>Glue </li></ul><ul><li>Comtelco Y3387D915 Yagi* </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    103. 103. Ground System Software <ul><li>AeroComm modem configuration software </li></ul><ul><li>Microcontroller configuration software </li></ul><ul><li>Data analysis </li></ul><ul><ul><li>Will use Excel to process raw data </li></ul></ul><ul><ul><li>Will plot an altitude-time graph with Excel </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    104. 104. Plans for Testing: Ground System <ul><li>Repeat ranged testing with raised dipole antenna </li></ul><ul><li>Determine R/F link quality with slightly different antenna polarizations </li></ul><ul><li>Test Yagi antenna for FCC compliancy </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    105. 105. Ground System Work to be Completed <ul><li>Determine max amount of data AeroComm software can store in buffer before overflowing </li></ul><ul><li>Determine optimal antenna height </li></ul><ul><li>Construct a case to house the modem near the antenna </li></ul><ul><ul><li>Will need to have wires run the length of the PVC pipe to the development board at the bottom </li></ul></ul><ul><li>Test both dipole and Yagi antennas </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    106. 106. Mission Operations Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates <ul><li>Concept of operations </li></ul><ul><li>Data analysis </li></ul>Presenter: Steve
    107. 107. Summary of PDR Changes Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve <ul><li>We are leaving on the 11 th of June instead of the 12 th . </li></ul><ul><li>We are only planning to have two people at this point </li></ul>
    108. 108. Concept of Operations: Competition Week <ul><li>We leave U of M the June 11 th in the morning </li></ul><ul><li>Drive all day until St. Louis and stay the night at Holiday Inn Select </li></ul><ul><li>Drive all day on the 12 th and arrive at the competition </li></ul><ul><li>Stay the night at the Holiday Inn </li></ul><ul><li>Leave Competition on the 15 th and drive home, staying the night in the same hotel in St. Louis </li></ul><ul><li>Drive all day on the 16 th until we are home </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Cost Estimates Mission Operations Presenter: Steve
    109. 109. Launch Day Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Cost Estimates Mission Operations Presenter: Steve Arrive at Launch Site - 3 hour Ground Station Set up - 60 min CanSat Testing - 30 min Assigned to Launch Window ~ - 15 min Integration with Rocket ~ - 10 min Blastoff!!! 0 CanSat Apogee ~ + 10 sec CanSat Deploys ~ + 12 sec Parachute Deploys ~ + 13 sec Data Collection ~ - 10 min – + 9 min CanSat Recovery ~120 min Pack up Ground Station After CanSat Recovery Data Analysis After CanSat Recovery Final Presentation Following Day
    110. 110. Launch Day Action Items Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Cost Estimates Mission Operations Presenter: Steve Retrieve and save the onboard data Return CanSat to storage and pick-up what’s left +2 hours Begin searching for CanSat Clean up the table +15 minutes Make sure collected data is saved & secure Analyze the GPS data to find landing site of CanSat +10 minutes Begin gathering data from the CanSat Begin gathering data from the CanSat ~0 minutes Power up CanSat and run final tests Hook up hardware and set up the ground antennas -30 minutes Set up computer systems Set up our table -3 hours Person B Person A Time
    111. 111. Contingencies <ul><li>I expect to have two people total </li></ul><ul><li>If any components break, we will attempt to fix them using the ground station tools (soldering iron, multimeter) or go on without them </li></ul><ul><li>The following components must not break </li></ul><ul><li>- Transceiver (ground’s or CanSat’s) </li></ul><ul><li>- Microcontroller </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Cost Estimates Mission Operations Presenter: Steve
    112. 112. Data Analysis Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Cost Estimates Mission Operations Presenter: Steve <ul><li>Plot the altitude with respect to time </li></ul><ul><li>Using Excel, create a series of best fit curves in order to model the mission </li></ul><ul><li>GPS Latitude and Longitude data could be graphed with respect to position and time in order to make a 3D model using Mat-Lab </li></ul>
    113. 113. <ul><li>Cost Estimates </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates <ul><li>Preliminary component cost estimates </li></ul><ul><li>Ground station cost estimate </li></ul><ul><li>Services cost estimate </li></ul>Presenter: Steve
    114. 114. Summary of PDR Changes Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve <ul><li>We needed more components than we </li></ul><ul><li>Every component has been purchased </li></ul><ul><li>We ordered a few extra components just in case things should break </li></ul>
    115. 115. Cost-Budget of the CanSat Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve $4.00 0 $4.00 $4.00 1 Transceiver Socket $0.00 0 $0.00 $0.00 1 Transceiver $0.00 0 $0.00 $0.00 1 Antenna $5.50 10 $5.00 $5.00 1 Parachute Release Rod and Connectors $0.00 0 $0.00 $0.00 1 Servo $3.77 0 $3.77 $3.77 1 Boost Converter $2.55 0 $2.55 $2.55 1 Buck Converter $2.32 0 $2.32 $2.32 1 Voltage Regulator $14.99 0 $14.99 $14.99 1 Battery $49.50 10 $45.00 $45.00 1 Circuit Board $0.00 0 $0.00 $0.00 1 GPS $40.00 0 $40.00 $40.00 1 Pressure Sensor $29.95 0 $29.95 $29.95 1 Proximity Detector $3.00 0 $3.00 $3.00 1 Serial Flash Memory $0.00 0 $0.00 $0.00 1 Microcontroller $1.68 0 $1.68 $1.68 1 Microcontroller Socket Net Cost Contingency (%) Subtotal Cost Cost per Unit Quantity Component
    116. 116. Cost-Budget of the CanSat Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve $170.61 - - - - Margin $329.39 - - - - Total with Contingency   - $222.29 - - Subtotals $100.36 - - -   System Reserve $3.23 0 3.23 $3.23 1 Buzzer $0.00 0 $0.00 $0.00 2 Resistor $0.00 0 $0.00 $0.00 4 Capacitor $0.00 0 $0.00 $0.00 2 Inductor $2.95 0 $2.95 $2.95 1 Relay $0.00 15 $0.00 $0.00 1 Parachute $3.30 10 $3.00 $3.00 1 Streamer $8.25 10 $7.50 $0.50 15 Screws $6.49 10 $5.90 $2.95 2 U Bolts $1.10 10 $1.00 $0.50 2 L Bracket $33.95 0 $33.95 $33.95 1 Shelf and End-Caps $16.50 0 $16.50 $16.50 1 Structure Exterior (Carbon 2.5 Heavy) Net Cost Contingency (%) Subtotal Cost Cost per Unit Quantity Component
    117. 117. Ground System Costs Presenter: Steve Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates $329.39 For Cansat $30.00 For Ground Station $359.39 Total Components Price Modem (AC4790 200M) Free 20-pin Mating Connector for Modem Free AeroComm Development Kit Free Antenna (Nearson S467FL-L-RMM-915) Free Battery Charger $22.95 Computer Free Modem Configuration Software Free Microcontroller Configuration Software Free Data Analysis Software Free PVC Pipe Free Misc. cables/wires (for powering modem and driver) Free Ground Station Reserve 7.05 Total $30.00
    118. 118. Schedule Overview <ul><li>Major milestones </li></ul><ul><li>Tasks to come </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve
    119. 119. Project Schedule Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve
    120. 120. Plans to Build <ul><li>Work with the carbon fiber and fabricate the structural components </li></ul><ul><li>Interface the transceiver, modem, GPS, power, and structure </li></ul><ul><li>Fabricate the circuit board </li></ul><ul><li>Calibrate pressure sensor and proximity detector then build their cycles into the microcontroller program </li></ul><ul><li>Integrate the data acquisition subsystem into the system </li></ul><ul><li>Interface with the motor using the microcontroller </li></ul><ul><ul><li>Completely build the parachute release mechanism </li></ul></ul><ul><ul><li>Program the microcontroller to move the motor when ~1m from ground </li></ul></ul><ul><li>TEST </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve
    121. 121. Major Milestones <ul><li>Trade Studies (Nov. 22 nd ) </li></ul><ul><li>MDR presentation to EXCOM (Oct. 17 th ) </li></ul><ul><li>PDR presentation to AAS (Feb. 14 th ) </li></ul><ul><li>CDR presentation to EXCOM (Feb. 20 th ) </li></ul><ul><li>CDR presentation to AAS (April 24 th ) </li></ul><ul><li>CanSat Fabrication Complete (May 20 th ) </li></ul><ul><li>Go/No Go demonstration (May 23 rd ) </li></ul><ul><li>Competition (June 13 th – 15 th ) </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Successfully completed Pending Presenter: Steve
    122. 122. Tasks to Come <ul><li>Code the microcontroller so that every component works </li></ul><ul><li>Finish telemetry work in the laboratory </li></ul><ul><li>Buy the circuit board </li></ul><ul><li>Fabricate the structure, end caps, and shelf </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve
    123. 123. Thank You Very Much <ul><li>Thank you to EXCOM for organizing and maintaining this program </li></ul><ul><li>Thank you to the American Astronautical Society, American Institute of Aeronautics and Astronautics, and NASA for orchestrating this competition </li></ul><ul><li>Thank you to all those who came before us </li></ul><ul><li>Thank you to my team which works very hard on this project </li></ul>Presenter: Steve
    124. 124. Questions and Comments <ul><li>System related? </li></ul><ul><li>Subsystem related? </li></ul><ul><li>Critiques? </li></ul><ul><li>Apparent issues? </li></ul><ul><li>Comments? </li></ul>Presenter: Steve
    125. 125. Backup Slides
    126. 126. Sensors <ul><li>Purpose – To obtain outside data and transmit that data to the command and data subsystem for processing. Specifically, altitude data must be transmitted at least every 5 seconds. </li></ul>Presenter: Mike
    127. 127. Power and Electrical Subsystem Purpose: To provide the cansat with enough power to run all of its components Presenter: Devin
    128. 128. Command and Data To record, store, and transmit measurements from other devices in an organized manner. Purpose Presenter: Lynn
    129. 129. Structures <ul><li>Maintain the constant shape of the cansat. </li></ul><ul><li>Support the necessary measuring instrumentation during the flight. </li></ul><ul><li>Effectively design landing gear that will result in the cansat coming to rest in an upright position. </li></ul>Purpose Presenter: Jake
    130. 130. Telemetry <ul><li>Purpose: Transfer collected data every 5 seconds from the cansat to the ground station, as required in competition guidelines. </li></ul>Presenter: Matt
    131. 131. Programming Language Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Lynn <ul><li>We chose to use C to program our Microcontroller </li></ul><ul><li>Simple </li></ul><ul><li>All-purpose </li></ul><ul><li>Widely Employed </li></ul><ul><li>Many tutorials available and easily </li></ul><ul><li>accessible </li></ul>Backup?
    132. 132. Microcontroller Software PICkit 2 Starter Kit <ul><li>Low cost, easy to use interface for programming microcontroller </li></ul><ul><li>Comes with Microchip’s MPLAB IDE software that programs, assembles, compiles using C </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Lynn Backup?
    133. 133. Team Requirement <ul><li>The cansat team will consist of no more than ten students, two of which being graduate students. </li></ul>
    134. 134. Phase A <ul><li>Began after the all hands meeting and progressed until today. </li></ul><ul><li>Identified the purpose, objectives, problems, and goals of our project. </li></ul><ul><li>Identified methods and tactics that will be employed to overcome the engineering problems. </li></ul><ul><li>The gateway into Phase B will be the approval of this MDR presentation. </li></ul><ul><li>This presentation covers everything accomplished in Phase A. </li></ul>
    135. 135. Phase B <ul><li>The preliminary design phase. </li></ul><ul><li>The components of the cansat will be chosen. </li></ul><ul><li>Solutions to each engineering problem will be implemented. </li></ul><ul><li>The cansat’s design will become more specific to its objectives. </li></ul><ul><li>The end of Phase B will be marked with the PDR presentation. </li></ul>
    136. 136. Phase C <ul><li>The critical design phase. </li></ul><ul><li>The cansat will be thoroughly designed. </li></ul><ul><li>All technical solutions will be implemented. </li></ul><ul><li>CAD blueprints will be finalized. </li></ul><ul><li>The cansat will be ready to be fabricated upon the completion of this phase. </li></ul><ul><li>The phase will end upon the approval of the CDR presentation. </li></ul>
    137. 137. Phase D <ul><li>The cansat is fabricated. </li></ul><ul><li>Each subsystem will undergo rigorous testing during the fabrication process to ensure reliability. </li></ul><ul><li>After building and testing, re-evaluation of the objectives will be held in order to ensure that it accomplishes its mission. </li></ul><ul><li>Phase D will conclude with a Go / No Go demonstration. </li></ul><ul><li>When given the go, the cansat will fly and win! </li></ul>
    138. 138. CanSat Requirements <ul><li>The cansat including parachute and any drag device shall fit inside the payload section. </li></ul><ul><li>The cansat will fit inside of a cylindrical payload envelope of 72.39mm diameter and 279mm in length without protrusions. </li></ul><ul><li>The cansat will be deployed from the payload section. </li></ul><ul><li>The cansat will have a mass of no more than 500 grams. </li></ul><ul><li>The cansat decent time will not exceed seven minutes nor will it fall with a velocity of more than 4.6 meters per second. </li></ul><ul><li>The cansat will cost no more than $500. </li></ul>
    139. 139. Accessories <ul><li>Universal Smart Charger for Li-Ion/Polymer battery Pack (3.7V - 14.8V, 1-4 cells) </li></ul><ul><li>Cost $22.95 </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin
    140. 140. Voltage Converter Trade Study Presenter: Devin Model Manufacturer Website Input Voltage Output Voltage Output Current Weight g Size mm Price $ LANE3.312N Wall Industries, Inc www.wallindustries.com 2.97-3.63 12 84mA Not Listed  19.5X6X10 13.65 RL-3.315S RECOM Power Inc. www.recom-power.com 3.3 15 17mA 1.8 Not listed Sample Inquiry RL-1.809S RECOM Power Inc. www.recom-power.com 1.8 9 139mA 1.8 Not listed  Sample Inquiry
    141. 141. Step Up Converter LM3211 3.7V to 5V 5V to 10V Presenter: Devin Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Electrical Overview
    142. 142. Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Rechargeable vs Non-Rechargeable Battery Comparison Presenter: Devin Battery Type Manufacturer Model # Cost ($) Mass (g) Dimensions (mm) Voltage (V) Max. Capacity (mAH) Rechargeable Lithium Ion-Polymer Total Power Solutions 5E+05 7.19 25.0 66X35X5 3.7 1300 Yes Nickel-Cadmium Total Power Solutions one AA 1.02 22.68 12.2diameterX50 1.2 950 No Alkaline Energizer E92 AA 5.68 for eight 23 14.5diameterX50.5 1.5 2850 No
    143. 143. Rechargeable vs. Non- Rechargeable Our choice is Rechargeable Presenter: Devin Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates RECHARGEABLE NON-RECHARGEABLE Reusability Longer Life Cycles Faster Discharge Rates Good Only Once Final Cost is Less Each Battery Costs Less
    144. 144. The Maize-Sat Road to Victory <ul><li>Team Maize-Sat held their first meeting on the 28 th of September. </li></ul><ul><li>Phase-A shall be completed by the 21 st of October. </li></ul><ul><li>Phase-B proceeds until November 21 st and will conclude with the preliminary design review (PDR). </li></ul><ul><li>Phase-C begins after PDR and will finalize with the presentation of the critical design review (CDR) in February. </li></ul><ul><li>Phase-D begins after CDR and will conclude June 13 th when team Maize-Sat procures victory at the 2008 National CanSat Competition. </li></ul>Presenter: Steve
    145. 145. Structures Purpose <ul><li>Maintain the constant shape of the CanSat </li></ul><ul><li>Support necessary measuring instrumentation during the flight </li></ul><ul><li>Achieve desired descent rate and locate CanSat using effective recovery system </li></ul><ul><li>Land CanSat in predefined upright position </li></ul><ul><li>Comply with competition requirements </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake
    146. 146. Material Trade Study <ul><li>Desired Properties </li></ul><ul><li>Strong </li></ul><ul><li>Lightweight </li></ul><ul><li>Inexpensive </li></ul><ul><li>Easy to shape </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake *custom 180 mm x 305 mm sheet = $40.28 Material Density (g/cc) Tensile Strength (GPa) Cost Carbon Fiber 1.75 3.5 $651.00/m^2* Fiberglass 2.1 1.08 $21.53/m^2 Aluminum 2.7 Varies $59.74/m^2 Steel 7.9 1.3 $52.31/m^2
    147. 147. Streamer Trade Study Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake <ul><li>Desired Properties </li></ul><ul><li>Highly visible </li></ul><ul><li>Inexpensive </li></ul>Model Dimensions Color Cost ASP sport 7.62 cm x 121.92 cm bright yellow $2.49 ASP Silver Dura-Lar 12.7 cm x 127.0 cm mirrored silver $2.95 ASP Silver Dura-Lar 15.24 cm x 152.4 cm mirrored silver $3.95 ASP Silver Dura-Lar 20.32 cm x 203.2 cm mirrored silver $5.95
    148. 148. Buzzer Trade Study Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake Decibel comparison Train whistle at 500’, Truck Traffic - 90dB KPEG 208H Frequency: 3500 +/- 500 Hz Tone: continuous   Piezo Buzzer (AI-3245-TF-LW95-R) AI-400 KPEG 272A KPEG 208H (pin) 29PN3120 Piezo Operating Voltage 3-28 Vdc 3-28 Vdc 3-20 Vdc 8-18 Vdc 3-28 Vdc Current Consumption 5mA 10mA 10mA 13mA 9mA Sound Pressure Level 90 dB (10 cm) 99 dB (10 cm) 95 dB (30 cm) 91 dB (30 cm) 90 dB (30 cm) Diameter 22.0 mm 42.0mm 31.5 mm 24.0 mm 41.8 mm Height 10.8 mm 14.0 mm 14.4 mm 17.5 mm 16 mm Weight 5 g 12 g 7 g 1.2 g 15 g Price $3.41 $2.96 $3.59 $3.35 $4.50
    149. 149. Parachute Trade Study Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake <ul><li>Desired Properties </li></ul><ul><li>X-form (between 939.8 mm and 2387.6 mm diameter) – helps with drift </li></ul><ul><li>Circular (between 762 mm and 1930.4 mm diameter) </li></ul><ul><li>Spill hole (helps with stability) </li></ul><ul><li>Lightweight </li></ul><ul><li>Strong (able to withstand opening shock) </li></ul>Make Spherachutes Spherachutes Top Flight Recovery Top Flight Recovery (x-form) Aerocon (x-form) Model 48&quot; Spherachute 36&quot; Spherachute Standard PAR-45 UXTPAR-48 73&quot; Ballistic Spillhole Yes Yes No  No No Shroud lines 8 6 8 8 12 Diameter 1219.2 mm 914.4 mm 1143.0 mm 1219.2 mm 1854.2 mm Weight 85.0 g 51.0 g ~70.0 g  ~70.0 g ~100.0 g Packed Volume (mm) 88.9 x 88.9 x 50.8 76.2 x 76.2 x 38.1 N/A N/A N/A Cost $34.00 $21.00 $19.95 $23.95 $25.00 Material 1.9 oz Rip-stop nylon 1.9 oz Rip-stop nylon 1.7 oz Rip-stop nylon 1.7 oz Rip-stop nylon Rip-stop nylon
    150. 150. Descent Rate <ul><li>Requirement: ~1.8 m/s < rate < 4.6 m/s </li></ul><ul><ul><li>(7 minute maximum descent time) </li></ul></ul><ul><li>1.42 m diameter x-form parachute: ~3.5 m/s* </li></ul><ul><ul><li>(~3.6 minute descent from 760 m altitude) </li></ul></ul><ul><li>Desired Parachute Properties </li></ul><ul><li>X-form (between 939.8 mm and 2387.6 mm diameter) – helps with drift </li></ul><ul><li>Circular (between 762 mm and 1930.4 mm diameter) </li></ul><ul><li>Spill hole (helps with stability) </li></ul><ul><li>Lightweight </li></ul><ul><li>Strong (able to withstand opening shock) </li></ul><ul><li>*based on projected 470 g CanSat </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake
    151. 151. Servo (Motor) Trade Study Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake Model Manufacturer Dimensions (mm) Mass Torque (g-f mm) Voltage Price S185 Super High Speed Horizon Hobbey/JR 11.2 x 19.8 x 20.3 6g 8713 or 9433 4.8V or 6V $17.99 Z270 Standard Race Horizon Hobbey/JR 18.5 x 39.4 x 37.1 42g 30963 or 35283 4.8V or 6V $17.99 331 Micro Horizon Hobbey/JR 12.7 x 28.4 x 29.7 18g 30243 4.8V $27.99 S241 Sub-Mirco Horizon Hobbey/JR 11.4 x 22.1 x 21.6 9g 12241 4.8V $27.99 537 Standard motor Horizon Hobbey/JR 18.5 x 29.2 x 33.5 45g 28803 or 35283 4.8V or 6V $26.99 Z550 Premium Race Horizon Hobbey/JR 18.5 x 29.2 x 33.5 42g 36723 or 44644 4.8V or 6V $34.99
    152. 152. Chosen Material <ul><li>Carbon fiber used as frame material </li></ul><ul><ul><li>Least dense </li></ul></ul><ul><ul><li>Highest tensile strength </li></ul></ul><ul><ul><li>Self-manufactured </li></ul></ul><ul><ul><ul><li>Custom shape </li></ul></ul></ul><ul><ul><ul><li>Less expensive </li></ul></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Jake
    153. 153. Circuit Board Possibilities Manufacture Our Own Buy One <ul><li>Pros </li></ul><ul><li>We could make many different </li></ul><ul><li>boards </li></ul><ul><li>We could run more tests </li></ul><ul><li>Cons </li></ul><ul><li>Materials would cost more </li></ul><ul><li>because of chemicals </li></ul><ul><li>It would take a lot of time and </li></ul><ul><li>energy </li></ul><ul><li>They would be lower quality </li></ul><ul><li>Pros </li></ul><ul><li>Higher quality </li></ul><ul><li>Cheaper because they are </li></ul><ul><li>mass produced </li></ul><ul><li>Cons </li></ul><ul><li>We could only work with a </li></ul><ul><li>couple of boards </li></ul>Our choice is to buy a quality circuit board. Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin
    154. 154. Serial Flash Trade Study Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Name Maker Cost Storage Space Voltage (V) Current (mA) Packaging Dimensions (mm) Mass (g) M25PE40 STMicroelectronics pending 512 KB 2.7-3.6 15 S08W 6.00 X 5.00 X 0.85 pending M45PE40 STMicroelectronics pending 512 KB 2.7-3.6 15 S08N 6.20 X 5.00 X 1.75 pending M45PE80 STMicroelectronics $3.12 1 MB 2.7-3.6 15 S08N 6.05 X 6.22 X 2.5 pending AT25F4096 ATMEL pending 512 KB 2.7-3.6 5 EIAJ SOIC & SAP 5.35 X 8.26 X 2.16 pending Pm25LV512A/040 Pflash pending 512 KB 2.7-3.6 15 SOIC & WSON 4.00 X 5.00 X 1.75 pending SST25VF040B STT $1.45 512 KB 2.7-3.6 15 SOIC & WSON 8.10 X 5.40 X 2.16 pending
    155. 155. Voltage Converter Trade Study Presenter: Devin Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Model Manufacturer Efficiency % Input Voltage Output Voltage Output Current Mass(g) Size (mm) Price $ LANE3.312N Wall Industries, Inc 70 2.97-3.63 12 84mA Not Listed  19.5X6X10 13.65 LM2757 National Semiconductors 80 2.7-5.5 4.1-5 180mA Not Listed 1.2X1.6X.4 1.50 LM3211 National Semiconductors 90 2.2-7.5 Vin-17 150mA Not Listed Not Listed 1.67 RL-3.315S RECOM Power Inc. 70 3.3 15 17mA 1.8 Not listed Sample Inquiry RL-1.809S RECOM Power Inc. 70 1.8 9 139mA 1.8 Not listed  Sample Inquiry
    156. 156. Circuit Board Manufacturers Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Devin Company Size mm Price $ Expresspcb custom 2 for 63 Pcb123 50.8X76.2 44.00 Sunstone Circuits 76.2X127 2 for 90
    157. 157. Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Rechargeable Battery Comparison Final Presenter: Devin Battery Type Manufacturer Model # Cost $ Mass (g) Dimensions (mm) Voltage (V) Max. Capacity (mAH) Lithium Ion-Polymer Total Power Solutions 503566 7.19 25.0 66X35X5 3.7 1300 Lithium Ion Ultralife UBP001 12.2 41 54X36X11 3.7 1800 Lithium Ion-Polymer Union Battery PRT-00341 7.95 18.5 47.5X29X5.84 3.7 860
    158. 158. GPS Trade Study Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Electrical Overview Presenter: Mike Manufacturer Model Dimensions Price Accuracy Mass Acquisition Time Communication Protocol Power Voltage Global Sat EM-406 30 mm x 30 mm x 10 mm $55 Within 2m 22 grams 1s (Hot) 42s (Cold) TTL 70 mA 4.5V-6.5V DC Input Garmin OEM GPS 15H-W 30 mm x 30 mm x 5 mm $54.95 Within 3m 15 grams 15s (Hot) 45s (Cold) TTL 85 mA 8V-40V DC Input Brick House Security Super Pocket Track 114 mm x 31.75 mm x 19.05 mm $59 Within 22m 40 grams Not compatible with current design Digital Battery Battery
    159. 159. Pressure Sensor Trade Study Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Electrical Overview Presenter: Mike Manufacturer Model Dimensions Price Accuracy Mass Acquisition Time Power Voltage Communication Protocol Omega PX71 030AV 9.14 mm x 5.84 mm x 19.81 mm $40 0.25% BFSL 35 grams 10ms 65 mA 85 DC Input Analogue Omega PX302 015AV 28.6 mm x 81.7 mm x 28.6 mm $235 0.25% BFSL 131 grams 10ms 97 mA 10V DC Input Analogue Vaisala PMB100 25.5 mm x 50.5 mm x 25.5 mm $799 ±0.3 hPa at room temperature 70 grams 200ms 75 mA 7V DC Input TTL Vaisala PTB210 120 mm x 32 mm x 50 mm $960 ± 0.25 hPa 110 grams 500ms 55 mA 6V DC Input TTL Vaisala PTB110 1.11 mm x 3.83 mm x 0.62 mm $1099 ±0.3 hPa at +20 °C 90 grams 500ms 115 mA 7V DC Input TTL
    160. 160. Data Redundancy Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt Time (s) 0 2 4 6 Data t D 0 D 0 , D 2 D 2 , D 4 D 4 , D 6
    161. 161. Modem Trade Study Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt Model MaxStream 9X-Stream MaxStream Xtend AeroComm AC4490 200M AeroComm AC4490 LR 200M AeroCommAC4490 1000M Integration IA4420 Tx Power Consumption 150 mA 730 mA 68 mA 68 mA 650 mA 24 to 26 mA Supply Voltage 5 V +/-0.25 V 2.8 to 5.5 V +/-50 mV 3.3 or 5.5 V +/-50 mV 3.3 or 5.5 V +/-50 mV 3.3 V +/-50 mV 2.2 to 5.4 V Mass 24 g 18 g < 21g <21 g < 21 g < 10 g Dimensions 40.6 x 71.7 x 8.9 mm 36.5 x 60.5 x 5.1 mm 49 x 42 x 5 mm 49 x 42 x 5 mm 49 x 42 x 5 mm 6.4 x 5.0 x 1.2 mm Max Range 32 km 64 km 6.4 km 12.9 km 64.4 km 3.5 km Serial Interface UART: 5V CMOS UART: 3 or 5V CMOS UART: 3.3 or 5V TTL UART: 3.3 or 5V TTL UART: 3.3V TTL SPI Rx Sensitivity Up to -110 dBm Up to -110 dBm Up to -100 dBm Up to -110 dBm Up to -110 dBm Up to -109 dBm Operating Temperature -40 to 85°C -40 to 85°C -40 to 80°C -40 to 80°C -40 to 80°C -40 to 85°C Cost $112.50 $134.25 $62.50 $68.50 $77.50 $20.00
    162. 162. Antenna Trade Study Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt Model Type Length Gain Connector Mass VSWR Cost Nearson S467FL-L-RMM-915 1/2 wave 182.9 mm 2 dBi MMCX TDB < 2.0 : 1 $16.00 Nearson S467XX-915 1/2 wave 211 mm 2 dBi SMA, TNC, BNC TDB < 2.0 : 1 $16.00 Nearson S161AM-915 1/2 wave 160 mm 2.5 dBi SMA TDB < 2.0 : 1 $10.00 Nearson S331AM-915 1/4 wave 88 mm 1 dBi SMA TDB < 2.0 : 1 $15.00 Antenna Factor ANT-DB1-RMS 1/4 wave 77.8 mm 3 dBi SMA, TNC TDB < 1.5 : 1 $19.50 Nearson SG101N-915 Omni 405 mm 5 dBi N TDB < 2.0 : 1 $52.00 Comtelco Y2283A-915 Yagi 381 mm 6 dBd Pigtail N, TNC < 0.907 kg < 2.0 : 1 $69.30 CushCraft PC8910N Yagi 1052 mm 11 dBd N 1.04 kg TDB $112.00
    163. 163. Microcontroller Trade Study Presenter: Lynn Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Name Type Speed Memory Space RAM Pin Count EEPROM Memory Space Price Microchip PIC18F4685 Flash 40MHz 96KBytes 3328 40 1024Bytes $6.19 Microchip PIC16C926 OTP 20MHz 14KBytes 336 64 0 $3.62 Microchip PIC18F2431 Flash 40MHz 16KBytes 768 28 256Bytes $3.07 Microchip PIC18F2455 Flash 48MHz 24KBytes 2048 28 256Bytes $3.38 Atmel 324P Flash 20MHz 32KBytes 2048 32 1024Bytes nil
    164. 164. Team Maize-Sat <ul><li>Undergraduates in the University of Michigan College of Engineering </li></ul><ul><li>Working as members of the Student Space Systems Fabrication Laboratory (S3FL) </li></ul><ul><li>Under the advising of Ricky Redick from EXCOM and Professor Ella Atkins </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Steve
    165. 165. Sensory Subsystem <ul><li>CanSat Competition Requirements </li></ul><ul><li>Maize-Sat Internal Requirements </li></ul><ul><li>Primary method </li></ul><ul><li>Redundant method </li></ul><ul><li>Trade studies </li></ul><ul><li>Contingencies </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Electrical Overview Presenter: Mike
    166. 166. Proximity Detector Beam at 10 ft Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Electrical Overview Presenter: Mike The beam does not need to be pointed directly at the ground, it will still detect the ground even if it is aimed ~20 degrees off Backup?
    167. 167. Contingencies Involved <ul><li>Sensors are small and fragile </li></ul><ul><li>The GPS might fail </li></ul><ul><li>Pressure sensor is the backup </li></ul><ul><li>Both units are at the mercy of the various stresses of the launch, the weather, and the landing </li></ul><ul><li>Altitude data may not be as accurate as anticipated </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Electrical Overview Presenter: Mike
    168. 168. System Risk Assessments <ul><li>MMCX connector </li></ul><ul><ul><li>It can break easily </li></ul></ul><ul><ul><li>Exercise caution and it should be fine </li></ul></ul><ul><li>Linking Issues </li></ul><ul><ul><li>Previous teams had problems linking AeroComm modems </li></ul></ul><ul><ul><li>Run thorough tests to avoid this problem </li></ul></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Presenter: Matt
    169. 169. Team Purpose <ul><li>To win the 2007-2008 CanSat competition </li></ul><ul><li>To execute the NASA project lifecycle: design, build, test, and fly </li></ul><ul><li>To gain practical hands on experience in engineering and teamwork skills </li></ul>Presenter: Steve Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates Introduction
    170. 170. Travel Costs Presenter: Steve Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Mission Operations Cost Estimates <ul><li>Assumptions </li></ul><ul><li>A U of M van at $37 per day </li></ul><ul><li>25 MpG for 2530.3 mile round trip </li></ul><ul><li>103 gallons of gas consumed </li></ul><ul><li>$3.25 per gallon of gas </li></ul><ul><li>5 days, 4 nights </li></ul><ul><li>$80.00 per night of lodging </li></ul><ul><li>2 provided meals and bringing lots of our own food </li></ul>Van ~$185.00 Gas ~$335.00 Lodging ~$320.00 Food ~$100.00 Total ~$940.00
    171. 171. Pressure-Altitude Calculations <ul><li>=1.4 for standard daytime conditions </li></ul><ul><li>p s = surface pressure (from pressure sensor) </li></ul><ul><li>p(z) = pressure as a function of altitude (from pressure sensor) </li></ul><ul><li>ρ s = calculate on day of competition utilizing online program </li></ul><ul><li>z = determined altitude </li></ul>Introduction Schedule Overview CanSat Overview Mechanical/Structural Overview Electrical Overview Flight Software Overview Integration and Test Overview Ground System Overview Cost Estimates Mission Operations Presenter: Steve

    ×