Your SlideShare is downloading. ×
Radar cross section project
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Radar cross section project

77
views

Published on

Published in: Education, Technology

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
77
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. RADAR CROSS SECTION(SAMPLE ASSIGNMENT) Our online Tutors are available 24*7 to provide Help with Help with Radar Cross Section Homework/Assignment or a long term Graduate/Undergraduate Help with Radar Cross SectionProject. Our Tutors being experienced and proficient in Help with Radar Cross Sectionensure to provide high quality Help with Radar Cross SectionHomework Help. Upload your Help with Radar Cross SectionAssignment at ‘Submit Your Assignment’ button or email it to . You can use our ‘Live Chat’ option to schedule an Online Tutoring session with our Help with Radar Cross Section Tutors. scattering of a object This sample assignment calculates radar cross section (RCS) of the scattering of a object using mie theory. mieHKURCS(a,f,erb,urb,erp,urp,N) %% funtion [an,bn,RCSTheta,RCSPhi,output] = mieHKURCS(a,f,erb,urb,erp,urp,N) %% Based on [*]L.Tsang,J.A.Kong,and K.H.Ding's "Scattering of Electromagnetic waves (volume I,Theories and Applications)" % Author: Shao Ying HUANG, 29 Sept 2010 %% Input % a: radius; % f: frequency; % erb: relative epsilon (background); % urb: relative mu (background); % erp: relative epsilon (the sphere) e.g. -5.3336+1.9698*i; % urp: relative mu (the sphere); % N: number of iteration, e.g. 20 (Criteria for N: aN ~ 0; bN ~ 0; cN ~ 0; dN ~ 0) %% Output % an,bn (note: need to double check whether an and bn converge) % RCSTheta,RCSPhi, % output[theta, RCSTheta(phi=0, ei=x),RCSPhi(phi=90,ei=x)] % output(:,2) is the MOM case % MoM comparison:: plot(output(:,1),output(:,2)) %% function [an,bn,RCSTheta,RCSPhi,output] = mieHKURCS(a,f,erb,urb,erp,urp,N) format long; e0=1/(4*pi*9*10.^9); %farads/m u0=4*pi*1e-7; %henries/m ub = urb*u0; eb = erb*e0; info@assignmentpedia.com
  • 2. up = urp*u0; ep = erp*e0; omega = 2*pi*f; kb = omega * sqrt(ub*eb); kp = omega * sqrt(up*ep); for n=1:N %% [*] p34 an(1,n)=(kp*kp*JSph(n,kp*a)*JDerPack(n,kb*a)-kb*kb*JSph(n,kb*a)*JDerPack(n,kp*a))... /(kp*kp*JSph(n,kp*a)*HDerPack(n,kb*a)-kb*kb*HSph(n,kb*a)*JDerPack(n,kp*a)); bn(1,n) = (JSph(n,kp*a)*JDerPack(n,kb*a)-JSph(n,kb*a)*JDerPack(n,kp*a))... /(JSph(n,kp*a)*HDerPack(n,kb*a)-HSph(n,kb*a)*JDerPack(n,kp*a)); end %% phi = 0, ei=x, e-field in the plane of observation numTheta=361; theta = 1e-7:pi/(numTheta-1):pi+1e-7; for j = 1:numTheta EsThetaTemp = 0; for n=1:N EsThetaTemp = EsThetaTemp + ((2*n+1)/n/(n+1))*(an(1,n)*TAU(n,theta(j))+bn(1,n)*PI(n,theta(j))); end RCSTheta(1,j)=(abs(EsThetaTemp)^2)*4*pi/kb/kb; end RCSTheta = 10.*log10(RCSTheta); xaxis = 180:-0.5:0; output(:,1) = xaxis'; output(:,2) = RCSTheta'; %% phi = 90 degree, ei=x,e-field normal to the plane of observation for j = 1:numTheta EsPhiTemp = 0; for n=1:N EsPhiTemp = EsPhiTemp + ((2*n+1)/n/(n+1))*(an(1,n)*PI(n,theta(j))+bn(1,n)*TAU(n,theta(j))); end RCSPhi(1,j)=(abs(EsPhiTemp)^2)*4*pi/kb/kb; end RCSPhi = 10.*log10(RCSPhi); output(:,3) = RCSPhi'; function output=Pn0Cos(n,theta) output = legendre(n,cos(theta)); output=output(1); function output=Pn1Cos(n,theta)
  • 3. output = legendre(n,cos(theta)); output=output(2); function output=PI(n,theta) output=-1*Pn1Cos(n,theta)/sin(theta); function output = TAU(n,theta) output = (sin(theta)/(1-cos(theta)^2))... *((n+1)*cos(theta)*Pn1Cos(n,theta)-n*Pn1Cos(n+1,theta)); % Spherical Bessel function output = JSph(n,z) output = sqrt(0.5*pi/z)*besselj(n+0.5,z); function output = JSphDer(n,z) output = JSph(n-1,z)-((n+1)/z)*JSph(n,z); function output = JDerPack(n,z) output = JSph(n,z)+z*JSphDer(n,z); % Spherical Hankel of the 1st kind function output = HSph(n,z) output = sqrt(0.5*pi/z)*besselh(n+0.5,z); function output = HSphDer(n,z) output = HSph(n-1,z)-((n+1)/z)*HSph(n,z); function output = HDerPack(n,z) output = HSph(n,z)+z*HSphDer(n,z); visit us at www.assignmentpedia.com or email us at info@assignmentpedia.com or call us at +1 520 8371215