### SlideShare for iOS

by Linkedin Corporation

FREE - On the App Store

AssignmentPedia is pioneer in providing services to the students who are looking for assignment and homework help. Services provided by AssignmentPedia are not restricted to homework and assignment ...

AssignmentPedia is pioneer in providing services to the students who are looking for assignment and homework help. Services provided by AssignmentPedia are not restricted to homework and assignment help, but we also help students by helping them online through our online help services. AssignmentPedia has set up a panel of experts form fields like Finance, Biology, Chemical Engineering, Physical Science etc. Experts at Assignment Pedia have experience of over 5 years in helping students in their assignment. Experts at AssignmentPedia cover topics which are important and student faces difficulty in understanding the topic. Step by step solution is provided for such topics so that students can understand the topic in a very simple manner and can revise the same whenever required. Topics which are difficult for student to understand, we provide notes for same that includes and pre solved sample questions.

We also provide students assistance in exam preparation by providing instant online tutoring session on the topics demanded by the student. Exam preparation help includes package for CLEP, GSCE, AS/A Levels, GRE,GMAT,SAT, ERP, MCAT etc. Our experts are qualified with master’s degree in their respective field to help student in their exam preparation.

Service provided by AssignmentPedia also includes coursework i.e. assignment for entire course is considered. We also provide help for thesis and dissertation for all the topics in both science and commerce stream

- Total Views
- 733
- Views on SlideShare
- 733
- Embed Views

- Likes
- 0
- Downloads
- 0
- Comments
- 0

No embeds

Uploaded via SlideShare as Adobe PDF

© All Rights Reserved

- 1. 1. Consider the game below, and answer the following questions: (a) Find all the Nash Equilibria for the subgame starting with player 1s second move. (b) Can player 2 play U as part of a subgame perfect Nash Equilibrium? Can player 2 play U as part of a Nash Equilibrium? (c) Can player 2 achieve a payo® of 3 as part of a subgame perfect Nash Equilibrium? Can player 2 achieve a payo® of 3 as part of a Nash Equilibrium? (d) Find a pure strategy Nash Equilibrium for the whole game that is not subgame perfect. (3/4,3) 1 2 U D (0,1/2) 2 2 1 L C R L C R U D L R (0,0) (1,1) (1,2) (2,1) (0,1) (0,1) DECISIONS, GAMES, AND RATIONAL CHOICE Our online Tutors are available 24*7 to provide Help with Decisions, Games, and Rational Choice Homework/Assignment or a long term Graduate/Undergraduate Decisions, Games, and Rational Choice Project. Our Tutors being experienced and proficient in Decisions, Games, and Rational Choice sensure to provide high quality Decisions, Games, and Rational Choice Homework Help. Upload your Decisions, Games, and Rational Choice Assignment at ‘Submit Your Assignment’ button or email it to info@assignmentpedia.com. You can use our ‘Live Chat’ option to schedule an Online Tutoring session with our Decisions, Games, and Rational Choice Tutors. http://www.assignmentpedia.com/game-theory-homework-assignment-help.html For further details, visit http://www.assignmentpedia.com/ or email us at info@assignmentpedia.com or call us on +1-520-8371215
- 2. 2. Consider the following simpli¯ed version of poker" with 2 players. Each player i is given a number ti. The numbers are drawn independently and uniformly from the interval [0; 1]. Each player must decide whether to Bid or Fold. If both players Fold then both players receive -1. If one player Bids and the other player Folds then the player that Bids receives +1 and the player that Folds receives -1. If both players Bid then the player with the higher number receives +k and the other player receives ¡k. (Note, the probability of a tie is zero and can be ignored.) (a) Set k = 2. Suppose the players play simultaneously. Find a Bayesian Nash equilibrium. (Hint: look for an equilibrium in which both players use cuto® strategies of the form Fold if ti · ®i, and Bid if ti > ®i.") Is this equilibrium unique? Be sure to describe the equilibrium completely and rigorously. (b) Suppose k increases. What happens to the cuto® levels? In words, what is the intuition for the change? (c) Again set k = 2. What if the players bid sequentially? That is, suppose player 1 must decide whether to Bid or Fold ¯rst, and player 2 observes his choice before deciding whether to Bid or Fold. Do the players have the same cuto® levels, or are they di®erent? If di®erent, which player has the higher cuto® level? In words, what is the intuition for this result? http://www.assignmentpedia.com/game-theory-homework-assignment-help.html For further details, visit http://www.assignmentpedia.com/ or email us at info@assignmentpedia.com or call us on +1-520-8371215
- 3. 3. MegaByteTechAssociates (MBTA) has a potential investment project. This project would develop an application for MacroStuft a prestigious cwidget manufacturer. The game pro ceeds in 3 time periods. In period 1, MBTA must make an irreversible decision about how much to invest in development. An investment level of I costs I2 =2, and creates a product that can be manufactured at cost cI and has value to MacroStuft of VM I, where VM > c (the product is a software template so only one unit is needed by MacroStuft). In period 2, MacroStuft observes I, chooses a price p ¸ 0, and makes a take-it-or-leave-it o®er to buy the product at price p. In period 3 MBTA accepts or rejects the o®er. If MBTA accepts the o®er, then it receives a payo® of p¡cI ¡I2 =2 and MacroStuft receives a payo® of VM I¡p. If MBTA rejects the o®er, then they receive a payo® of ¡I2 =2 and MacroStuft receives a payo® of 0. (a) Write out an extensive form representation of the game. Find the pure strategy, subgame perfect Nash equilibrium of the game. What is the optimal investment level (the level that maximizes the total surplus generated by the product)? How does it compare to the equilibrium investment level? Intuitively, why does MBTA choose the level of investment it does, even though the project creates more value than it costs? Now modify the game in the following way. Suppose there are 5 time periods. The ¯rst three are as given above. Now, however, if MBTA refuses the MacroStuft o®er, then it can o®er the product to another company, Solar. Speci¯cally, if MBTA refuses to sell to MacroStuft, then the game moves to period 4. In period 4, MBTA chooses a price q, and makes a take-it-or-leave-it o®er to Solar to buy the product at price q. Solar values the product at VSI, and the cost of production is the same as above. In period 5, Solar either rejects or accepts the o®er and the game ends. If Solar rejects, then both it and MacroStuft receive payo®s of 0, and MBTA receives a payo® of ¡I2 =2. If Solar accepts the o±ce, then it receives a payo® VSI¡q, MBTA receives q¡cI¡I2=2, and MacroStuft receives ¡r (MacroStuft is a jealous company, and ¡r represents its distress from seeing a competitor obtain the project). (b) Find the Pure strategy subgame perfect Nash equilibrium of this game. Does your answer depend on the relative magnitudes of VM and VS? If equilibrium investment by MBTA is di®erent than in part (a), give an intuitive explanation for the di®erence. http://www.assignmentpedia.com/game-theory-homework-assignment-help.html For further details, visit http://www.assignmentpedia.com/ or email us at info@assignmentpedia.com or call us on +1-520-8371215
- 4. Return to the three-period game of part (a), but now allow MacroStuft to make the following o®er. In period 0 (before MBTA makes its investment decision), MacroStuft o®ers a legally enforceable and unbreakable option contract, that committs it to buy the project for VM per unit of I at period 3 in return for a ¯xed payment of F now. MBTA may then accept or reject the option contract, and in either case play proceeds as before. Now of course, if MBTA buys the option the payo®s are di®erent. (c) Write out an extensive form for this game paying special attention to the payo®s on the branch where MBTA accepts the option contract. Find the pure strategy subgame perfect nash equilibrium in this game. What fee F will be charged for the option? What does this example tell us about the value of enforceable contracts? http://www.assignmentpedia.com/game-theory-homework-assignment-help.html For further details, visit http://www.assignmentpedia.com/ or email us at info@assignmentpedia.com or call us on +1-520-8371215

Full NameComment goes here.