Fwd: geothermal --first set of slides

1,091 views
1,043 views

Published on

Published in: Engineering, Technology, Business
1 Comment
0 Likes
Statistics
Notes
  • i have to do some reseash about geothermal energy, please can I download this presentation?
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

No Downloads
Views
Total views
1,091
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
87
Comments
1
Likes
0
Embeds 0
No embeds

No notes for slide
  • Fwd: geothermal --first set of slides

    1. 1. GEOTHERMAL ENERGY <ul><li>BALASUBRAMANIAN.M </li></ul><ul><li>ASHIQ AHAMED.C </li></ul><ul><li>BADRINATH.K </li></ul>
    2. 2. <ul><li>WORKING PRINCIPLE </li></ul>
    3. 3. What is it ……. ? <ul><li>Geo = earth </li></ul><ul><li>+ </li></ul><ul><li>Thermal = Heat </li></ul>
    4. 7. CAUSE OF SOURCES <ul><li>Earth's core maintains temperatures in excess of 5000°C </li></ul><ul><ul><li>Heat gradual radioactive decay of elements </li></ul></ul><ul><li>Heat energy continuously flows from hot core </li></ul><ul><ul><li>Conductive heat flow </li></ul></ul><ul><ul><li>Convective flows of molten mantle beneath the crust . </li></ul></ul>
    5. 8. Contd…… <ul><li>Mean heat flux at earth's surface </li></ul><ul><ul><li>16 kilowatts of heat energy per square kilometer </li></ul></ul><ul><ul><li>Dissipates to the atmosphere and space. </li></ul></ul><ul><ul><li>Tends to be strongest along tectonic plate boundaries </li></ul></ul>
    6. 9. Contd… <ul><li>Volcanic activity transports hot material to near the surface </li></ul><ul><ul><li>Only a small fraction of molten rock actually reaches surface. </li></ul></ul><ul><ul><li>Most is left at depths of 5-20 km beneath the surface, </li></ul></ul><ul><li>Hydrological convection forms high temperature geothermal systems at shallow depths of 500-3000m. </li></ul>
    7. 11. Geothermal Model
    8. 13. OPERATION
    9. 14. OUTLINE <ul><li>DRY STEAM </li></ul><ul><li>DIRECT USE </li></ul><ul><li>FLASH –SINGLE & DOUBLE </li></ul><ul><li>BINARY </li></ul><ul><li>HOT DRY ROCK </li></ul><ul><li>EGS </li></ul>
    10. 15. Dry Steam Schematic
    11. 16. Dry Steam Power Plants <ul><li>“ Dry” steam extracted from natural reservoir </li></ul><ul><ul><li>180-225 ºC ( 356-437 ºF) </li></ul></ul><ul><ul><li>4-8 MPa (580-1160 psi) </li></ul></ul><ul><ul><li>200+ km/hr (100+ mph) </li></ul></ul><ul><li>Steam is used to drive a turbo-generator </li></ul><ul><li>Steam is condensed and pumped back into the ground </li></ul><ul><li>Can achieve 1 kWh per 6.5 kg of steam </li></ul><ul><ul><li>A 55 MW plant requires 100 kg/s of steam </li></ul></ul><ul><ul><li>Range 2.5 to 5 MW </li></ul></ul>
    12. 17. THE GEYSERS-CA-LARGEST DRY STEAM
    13. 18. Direct Use Technologies <ul><li>Geothermal heat is used directly rather than for power generation </li></ul><ul><li>Extract heat from low temperature geothermal resources < 150 o C </li></ul><ul><li>Applications sited near source (<10 km) </li></ul>
    14. 19. Borehole Heat Exchange This type uses one or two underground vertical loops that extend 150 meters below the surface.
    15. 20. DISTRICT HEATING SYSTEM
    16. 22. Single Flash Steam
    17. 23. Single Flash Steam Power Plants <ul><li>Steam with water extracted from ground </li></ul><ul><li>Pressure of mixture drops at surface and more water “flashes” to steam </li></ul><ul><li>Steam separated from water </li></ul><ul><li>Steam drives a turbine </li></ul><ul><li>Turbine drives an electric generator </li></ul><ul><li>Generate between 5 and 100 MW </li></ul><ul><li>Use 6 to 9 tonnes of steam per hour </li></ul>
    18. 25. Double Flash Schematic
    19. 26. Double Flash Power Plants <ul><li>Similar to single flash operation </li></ul><ul><li>Unflashed liquid flows to low-pressure tank – flashes to steam </li></ul><ul><li>Steam drives a second-stage turbine </li></ul><ul><ul><li>Also uses exhaust from first turbine </li></ul></ul><ul><li>Increases output 20-25% for 5% increase in plant costs </li></ul>
    20. 27. Binary Cycle Schematic
    21. 28. Binary Cycle Power Plants <ul><li>Low temps – 100 o and 150 o C </li></ul><ul><li>Use heat to vaporize organic liquid </li></ul><ul><ul><li>E.g., iso-butane, iso-pentane </li></ul></ul><ul><li>Use vapor to drive turbine </li></ul><ul><ul><li>Causes vapor to condense </li></ul></ul><ul><ul><li>Recycle continuously </li></ul></ul><ul><li>Typically 7 to 12 % efficient </li></ul><ul><li>0.1 – 40 MW units common </li></ul>
    22. 30. Binary Plant Power Output
    23. 31. Combined Cycle Plants <ul><li>Combination of conventional steam turbine technology and binary cycle technology </li></ul><ul><ul><li>Steam drives primary turbine </li></ul></ul><ul><ul><li>Remaining heat used to create organic vapor </li></ul></ul><ul><ul><li>Organic vapor drives a second turbine </li></ul></ul><ul><li>Plant sizes ranging between 10 to 100+ MW </li></ul><ul><li>Significantly greater efficiencies </li></ul><ul><ul><li>Higher overall utilization </li></ul></ul><ul><ul><li>Extract more power (heat) from geothermal resource </li></ul></ul>
    24. 33. Hot Dry Rock Technology <ul><li>Wells drilled 3-6 km into crust </li></ul><ul><ul><li>Hot crystalline rock formations </li></ul></ul><ul><li>Water pumped into formations </li></ul><ul><li>Water flows through natural fissures picking up heat </li></ul><ul><li>Hot water/steam returns to surface </li></ul><ul><li>Steam used to generate power </li></ul>
    25. 35. Hot Dry Rock Technology Fenton Hill plant
    26. 36. SITE SELECTION
    27. 38. CASE STUDY-------SABALAN , NW IRAN
    28. 43. KEY- R & D -WORK <ul><li>Site Selection </li></ul><ul><li>Site Characterization </li></ul><ul><li>Reservoir Creation </li></ul><ul><li>Reservoir Validation </li></ul><ul><li>Interwell Connectivity </li></ul><ul><li>Reservoir Scale Up </li></ul><ul><li>Reservoir Sustainability </li></ul>
    29. 44. <ul><li>Prioritization of sites for future EGS development and estimating the size of the economic EGS resource. </li></ul><ul><li>Low-risk, economical EGS site selection and characterization capabilities. </li></ul><ul><li>Drilling, casing, and preparing the wells for simulation and production. </li></ul>
    30. 45. ENHANCED GEOTHERMAL SYSTEMS
    31. 46. Tectonic Plate Movements
    32. 49. World Wide Geothermal Uses and Potential
    33. 50. RING OF FIRE
    34. 51. Availability of Geothermal Energy <ul><li>On average, the Earth emits 16kW/km 2 . However, this number can be much higher in areas such as regions near volcanoes, hot springs and fumaroles. </li></ul><ul><li>As a rough rule, 1 km 3 of hot rock cooled by 100 0 C will yield 30 MW of electricity over thirty years. </li></ul><ul><li>There is believed to be enough heat radiating from the center of the Earth to fulfill human energy demands for the remainder of the biosphere’s lifetime. </li></ul>
    35. 52. Geothermal Site Schematic
    36. 53. Ground Structures
    37. 54. Performance vs. Rock Type

    ×