SlideShare a Scribd company logo
1 of 20
V-BLAST

          R . Rahul Sekhar
THE BIG QUESTION
 With limited power, scarce and
 highly precious bandwidth, how to
 increase the data rate?
BLAST ARCHITECTURE
    Rich-scattering wireless channel is capable of enormous theoretical
     capacities if the multipath is properly exploited.
    A novel method used for this is using BLAST architecture
    Three specific implementations of BLAST, depending on the type of
     coding employed:
1.    Diagonal-BLAST (D-BLAST)
2.    Vertical-BLAST (V-BLAST)
3.    Turbo-BLAST
WHY BLAST?
   Unlike code division or other spread-spectrum multiple access
    techniques, the total channel bandwidth utilized in a BLAST system
    is only a small fraction in excess of the symbol rate.
   Unlike FDMA, each transmitted signal occupies the entire system
    bandwidth.
   Finally, unlike TDMA, the entire system bandwidth is used
    simultaneously by all of the transmitters all of the time.
   Taken together, these differences together are precisely what give
    BLAST the potential to realize higher spectral efficiencies than the
    multiple-access techniques.
   An essential feature of BLAST is that no explicit orthogonalization of
    the transmitted signals is imposed by the transmit structure at all.
   Instead, the propagation environment itself, is exploited to achieve
    the signal decorrelation necessary to separate the co-channel
    signals.
D-BLAST
 It utilizes multi-element antenna arrays at both
  transmitter and receiver
 Diagonally layered coding structure in which code
  blocks are dispersed across diagonals in space
  time
 In a Rayleigh scattering environment, this structure
  leads to theoretical rates which grow linearly with
  the number of antennas(~90% of Shannon
  capacity)
DIAGONAL LAYERING
D BLAST
V-BLAST
                   Difference from D-Blast?
   V-BLAST architecture is a simplified version of D-BLAST, that tries to
    reduce its computational complexity.
   The layering is horizontal, meaning that all the symbols of a certain
    stream are transmitted through the same antenna (one stream per
    antenna).
   It eliminates the space time wastage, but loses the transmit diversity,
    since each stream is “tied” to its antenna.
APPLICATIONS
   V-BLAST is an essential part of MIMO technology.
   As such it is an integral part of modern wireless
    communication standards such as IEEE 802.11n (Wi-Fi), 4G,
    3GPP Long Term Evolution, WiMAX and HSPA+.
SYSTEM OVERVIEW
   A single data stream is demultiplexed into M sub streams.
   Each sub stream is then encoded into symbols and fed to its
    respective transmitter.
   Transmitters 1 − M operate co-channel at symbol rate 1/ T
    symbols/sec.
   Each transmitter is itself an ordinary QAM transmitter.
   The same constellation is used for each substream.
   Receivers 1 − N are, individually, conventional QAM receivers.
   These receivers also operate co-channel, each receiving the signals
    radiated from all M transmit antennas.
   Flat fading is assumed.
   The matrix channel transfer function is HN×M, where hi j is the
    (complex) transfer function from transmitter j to receiver i, and M ≤ N.
V-BLAST DETECTION
   Let a = (a1 , a2 , . . . ,aM ) T denote the vector of transmit symbols.
   Then the corresponding received N vector is
                                  r1 = Ha + ν
    where ν is a noise vector.
   Each substream in turn is considered to be the desired signal, and
    the remainder are considered as "interferers".(Nulling)
   Nulling is performed by linearly weighting the received signals so as
    to satisfy some performance-related criterion, such as minimum
    mean-squared error (MMSE) or zero-forcing (ZF).
   Zero-forcing Nulling can be performed by choosing weight vectors wi
    , i = 1 , 2 , . . . , M, such that
                        wi T(H) j = δi j
    where (H) j is the jth column of H, and δ is the Kronecker delta. Thus,
    the decision statistic for the ith sub stream is yi = wi T ri
project the
received signal y
onto the
subspace
orthogonal to the
one spanned by
h1, h2.......hnt
   Superior performance is obtained if nonlinear techniques are used.
   Use symbol cancellation as well as linear nulling to perform
    detection.
   Interference from already-detected components of a is subtracted out
    from the received signal vector, resulting in modified received vector
    in which, effectively, fewer interferers are present.
1.    Order determination, in which the N, received substreams are to
     be detected, in accordance with the post detection signal-to-noise
     ratios of the individual sub streams.
2.   Detection of the sub stream, starting with the largest signal-to-
     noise ratio.
3.    Signal cancellation, wherein the effect of the detected sub stream
     is removed from subsequent sub streams.
4.    Repetition of steps 1 through 3 until all the N, received sub
     streams have been individually detected
(V-BLAST) DECODING

   Initialization:                    Recursion:

     i     1
                                              wki         (Gi ) ki
     G1    H
                                                                  H
                              2               y ki       wki          ri
     k1   arg min (G1 ) j
               j
                                              ˆ
                                              a ki       Q ( y ki )
                                              ri   1     ri       ˆ
                                                                  a ki ( H ) ki
    G     H        (H H H ) 1 H H
                                              Gi     1   H ki
     G    (H H H         2
                             I) 1H H                                              2
                                              ki     1    arg min (Gi 1 ) j
                                                              j   k1ki

                                               i         i 1
REFERENCES
   V-BLAST: An Architecture for Realizing Very High Data Rates Over
    the Rich-Scattering Wireless Channel
    P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela
   Modern wireless communication
    Simon Haykin , Michael Moher
   BLAST Architectures
    Eduardo Zacar´ıas B.
   Fundamentals of wireless communication
     David Tse , Pramod
   Performance Analysis of V-BLAST Detectors for the MIMO channel
     Fenghua Li

More Related Content

What's hot

5. 2 ray propagation model part 1
5. 2 ray propagation model   part 15. 2 ray propagation model   part 1
5. 2 ray propagation model part 1JAIGANESH SEKAR
 
TDMA, FDMA, and CDMA
TDMA, FDMA, and CDMATDMA, FDMA, and CDMA
TDMA, FDMA, and CDMANajeeb Khan
 
Prioritizing handoffs
Prioritizing handoffsPrioritizing handoffs
Prioritizing handoffsAJAL A J
 
Small scale fading
Small scale fadingSmall scale fading
Small scale fadingAJAL A J
 
The cellular concept
The cellular conceptThe cellular concept
The cellular conceptZunAib Ali
 
Frequency Division Multiple Access (FDMA)
Frequency Division Multiple Access (FDMA)Frequency Division Multiple Access (FDMA)
Frequency Division Multiple Access (FDMA)Miles Kevin Galario
 
Spread Spectrum Multiple Access
 Spread Spectrum Multiple Access Spread Spectrum Multiple Access
Spread Spectrum Multiple Accessguest734441
 
cellular concepts in wireless communication
cellular concepts in wireless communicationcellular concepts in wireless communication
cellular concepts in wireless communicationasadkhan1327
 
2. wireless propagation models free space propagation
2. wireless propagation models   free space propagation2. wireless propagation models   free space propagation
2. wireless propagation models free space propagationJAIGANESH SEKAR
 
Handoff in Mobile Communication
Handoff in Mobile CommunicationHandoff in Mobile Communication
Handoff in Mobile CommunicationNoushad Hasan
 
Ec 2401 wireless communication unit 4
Ec 2401 wireless communication   unit 4Ec 2401 wireless communication   unit 4
Ec 2401 wireless communication unit 4JAIGANESH SEKAR
 

What's hot (20)

Imt 2000
Imt 2000Imt 2000
Imt 2000
 
5. 2 ray propagation model part 1
5. 2 ray propagation model   part 15. 2 ray propagation model   part 1
5. 2 ray propagation model part 1
 
IS-95 Cdma
IS-95 CdmaIS-95 Cdma
IS-95 Cdma
 
Spread spectrum modulation
Spread spectrum modulationSpread spectrum modulation
Spread spectrum modulation
 
TDMA, FDMA, and CDMA
TDMA, FDMA, and CDMATDMA, FDMA, and CDMA
TDMA, FDMA, and CDMA
 
Propagation Model
Propagation ModelPropagation Model
Propagation Model
 
Quadrature amplitude modulation
Quadrature amplitude modulationQuadrature amplitude modulation
Quadrature amplitude modulation
 
Prioritizing handoffs
Prioritizing handoffsPrioritizing handoffs
Prioritizing handoffs
 
SPEECH CODING
SPEECH CODINGSPEECH CODING
SPEECH CODING
 
Small scale fading
Small scale fadingSmall scale fading
Small scale fading
 
Multiple Access
Multiple AccessMultiple Access
Multiple Access
 
The cellular concept
The cellular conceptThe cellular concept
The cellular concept
 
Frequency Division Multiple Access (FDMA)
Frequency Division Multiple Access (FDMA)Frequency Division Multiple Access (FDMA)
Frequency Division Multiple Access (FDMA)
 
Wireless channels
Wireless channels Wireless channels
Wireless channels
 
Spread Spectrum Multiple Access
 Spread Spectrum Multiple Access Spread Spectrum Multiple Access
Spread Spectrum Multiple Access
 
cellular concepts in wireless communication
cellular concepts in wireless communicationcellular concepts in wireless communication
cellular concepts in wireless communication
 
2. wireless propagation models free space propagation
2. wireless propagation models   free space propagation2. wireless propagation models   free space propagation
2. wireless propagation models free space propagation
 
OFDM
OFDMOFDM
OFDM
 
Handoff in Mobile Communication
Handoff in Mobile CommunicationHandoff in Mobile Communication
Handoff in Mobile Communication
 
Ec 2401 wireless communication unit 4
Ec 2401 wireless communication   unit 4Ec 2401 wireless communication   unit 4
Ec 2401 wireless communication unit 4
 

Viewers also liked

Viewers also liked (18)

BLAST
BLASTBLAST
BLAST
 
BLAST
BLASTBLAST
BLAST
 
blast bioinformatics
blast bioinformaticsblast bioinformatics
blast bioinformatics
 
Blast
BlastBlast
Blast
 
Mimo ofdm wireless communications with matlab
Mimo ofdm wireless communications with matlabMimo ofdm wireless communications with matlab
Mimo ofdm wireless communications with matlab
 
It's all about Apps, VON, May 2006
It's all about Apps, VON, May 2006It's all about Apps, VON, May 2006
It's all about Apps, VON, May 2006
 
Space time coding in mimo
Space time coding in mimo Space time coding in mimo
Space time coding in mimo
 
Seminar report
Seminar reportSeminar report
Seminar report
 
combat fading in wireless
combat fading in wirelesscombat fading in wireless
combat fading in wireless
 
Mimo
MimoMimo
Mimo
 
BLAST(Basic Local Alignment Tool)
BLAST(Basic Local Alignment Tool)BLAST(Basic Local Alignment Tool)
BLAST(Basic Local Alignment Tool)
 
Presentation on bipolar junction transistor
Presentation on bipolar junction transistorPresentation on bipolar junction transistor
Presentation on bipolar junction transistor
 
Seminar report guidelines1
Seminar report guidelines1Seminar report guidelines1
Seminar report guidelines1
 
What is Cognitive Radio?
What is Cognitive Radio? What is Cognitive Radio?
What is Cognitive Radio?
 
Linear block coding
Linear block codingLinear block coding
Linear block coding
 
Cognitive Radio
Cognitive RadioCognitive Radio
Cognitive Radio
 
Wimax
WimaxWimax
Wimax
 
Wi Vi technology
Wi Vi technology Wi Vi technology
Wi Vi technology
 

Similar to Vblast

Bit Error Rate Performance of MIMO Spatial Multiplexing with MPSK Modulation ...
Bit Error Rate Performance of MIMO Spatial Multiplexing with MPSK Modulation ...Bit Error Rate Performance of MIMO Spatial Multiplexing with MPSK Modulation ...
Bit Error Rate Performance of MIMO Spatial Multiplexing with MPSK Modulation ...ijsrd.com
 
A Review on Image Denoising using Wavelet Transform
A Review on Image Denoising using Wavelet TransformA Review on Image Denoising using Wavelet Transform
A Review on Image Denoising using Wavelet Transformijsrd.com
 
Multi-Carrier Transmission over Mobile Radio Channels.ppt
Multi-Carrier Transmission over Mobile Radio Channels.pptMulti-Carrier Transmission over Mobile Radio Channels.ppt
Multi-Carrier Transmission over Mobile Radio Channels.pptStefan Oprea
 
Performance of spread spectrum system
Performance of spread spectrum systemPerformance of spread spectrum system
Performance of spread spectrum systemNanhen Verma
 
Neuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experimentsNeuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experimentsSSA KPI
 
Microsoft PowerPoint - Spread Spectrum.pptx.pdf
Microsoft PowerPoint - Spread Spectrum.pptx.pdfMicrosoft PowerPoint - Spread Spectrum.pptx.pdf
Microsoft PowerPoint - Spread Spectrum.pptx.pdfajith473145
 
Introduction to Channel Capacity | DCNIT-LDTalks-1
Introduction to Channel Capacity | DCNIT-LDTalks-1Introduction to Channel Capacity | DCNIT-LDTalks-1
Introduction to Channel Capacity | DCNIT-LDTalks-1Arunabha Saha
 
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...IOSR Journals
 
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...IOSR Journals
 
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...IOSR Journals
 
Chapter7 circuits
Chapter7 circuitsChapter7 circuits
Chapter7 circuitsVin Voro
 
Popular Interview Wireless Question with Answer
Popular Interview Wireless Question with AnswerPopular Interview Wireless Question with Answer
Popular Interview Wireless Question with AnswerVARUN KUMAR
 
Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission
Synthesis of Band-Limited Orthogonal Signals for Multichannel Data TransmissionSynthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission
Synthesis of Band-Limited Orthogonal Signals for Multichannel Data TransmissionAhmed Alshomi
 
Class06 transmission line_basics
Class06 transmission line_basicsClass06 transmission line_basics
Class06 transmission line_basicsbhaavan22
 

Similar to Vblast (20)

Ofdm
OfdmOfdm
Ofdm
 
Iy2415661571
Iy2415661571Iy2415661571
Iy2415661571
 
Bit Error Rate Performance of MIMO Spatial Multiplexing with MPSK Modulation ...
Bit Error Rate Performance of MIMO Spatial Multiplexing with MPSK Modulation ...Bit Error Rate Performance of MIMO Spatial Multiplexing with MPSK Modulation ...
Bit Error Rate Performance of MIMO Spatial Multiplexing with MPSK Modulation ...
 
UNIT5_1.pdf
UNIT5_1.pdfUNIT5_1.pdf
UNIT5_1.pdf
 
OFDM Basics.ppt
OFDM Basics.pptOFDM Basics.ppt
OFDM Basics.ppt
 
A Review on Image Denoising using Wavelet Transform
A Review on Image Denoising using Wavelet TransformA Review on Image Denoising using Wavelet Transform
A Review on Image Denoising using Wavelet Transform
 
Multi-Carrier Transmission over Mobile Radio Channels.ppt
Multi-Carrier Transmission over Mobile Radio Channels.pptMulti-Carrier Transmission over Mobile Radio Channels.ppt
Multi-Carrier Transmission over Mobile Radio Channels.ppt
 
Performance of spread spectrum system
Performance of spread spectrum systemPerformance of spread spectrum system
Performance of spread spectrum system
 
Neuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experimentsNeuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experiments
 
Microsoft PowerPoint - Spread Spectrum.pptx.pdf
Microsoft PowerPoint - Spread Spectrum.pptx.pdfMicrosoft PowerPoint - Spread Spectrum.pptx.pdf
Microsoft PowerPoint - Spread Spectrum.pptx.pdf
 
Introduction to Channel Capacity | DCNIT-LDTalks-1
Introduction to Channel Capacity | DCNIT-LDTalks-1Introduction to Channel Capacity | DCNIT-LDTalks-1
Introduction to Channel Capacity | DCNIT-LDTalks-1
 
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
 
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
 
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
 
Chapter7 circuits
Chapter7 circuitsChapter7 circuits
Chapter7 circuits
 
Popular Interview Wireless Question with Answer
Popular Interview Wireless Question with AnswerPopular Interview Wireless Question with Answer
Popular Interview Wireless Question with Answer
 
Gprs
GprsGprs
Gprs
 
Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission
Synthesis of Band-Limited Orthogonal Signals for Multichannel Data TransmissionSynthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission
Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission
 
Unit 5.pdf
Unit 5.pdfUnit 5.pdf
Unit 5.pdf
 
Class06 transmission line_basics
Class06 transmission line_basicsClass06 transmission line_basics
Class06 transmission line_basics
 

Recently uploaded

Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 

Recently uploaded (20)

DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 

Vblast

  • 1. V-BLAST R . Rahul Sekhar
  • 2. THE BIG QUESTION With limited power, scarce and highly precious bandwidth, how to increase the data rate?
  • 3. BLAST ARCHITECTURE  Rich-scattering wireless channel is capable of enormous theoretical capacities if the multipath is properly exploited.  A novel method used for this is using BLAST architecture  Three specific implementations of BLAST, depending on the type of coding employed: 1. Diagonal-BLAST (D-BLAST) 2. Vertical-BLAST (V-BLAST) 3. Turbo-BLAST
  • 4. WHY BLAST?  Unlike code division or other spread-spectrum multiple access techniques, the total channel bandwidth utilized in a BLAST system is only a small fraction in excess of the symbol rate.  Unlike FDMA, each transmitted signal occupies the entire system bandwidth.  Finally, unlike TDMA, the entire system bandwidth is used simultaneously by all of the transmitters all of the time.  Taken together, these differences together are precisely what give BLAST the potential to realize higher spectral efficiencies than the multiple-access techniques.  An essential feature of BLAST is that no explicit orthogonalization of the transmitted signals is imposed by the transmit structure at all.  Instead, the propagation environment itself, is exploited to achieve the signal decorrelation necessary to separate the co-channel signals.
  • 5. D-BLAST  It utilizes multi-element antenna arrays at both transmitter and receiver  Diagonally layered coding structure in which code blocks are dispersed across diagonals in space time  In a Rayleigh scattering environment, this structure leads to theoretical rates which grow linearly with the number of antennas(~90% of Shannon capacity)
  • 8. V-BLAST Difference from D-Blast?  V-BLAST architecture is a simplified version of D-BLAST, that tries to reduce its computational complexity.  The layering is horizontal, meaning that all the symbols of a certain stream are transmitted through the same antenna (one stream per antenna).  It eliminates the space time wastage, but loses the transmit diversity, since each stream is “tied” to its antenna.
  • 9. APPLICATIONS  V-BLAST is an essential part of MIMO technology.  As such it is an integral part of modern wireless communication standards such as IEEE 802.11n (Wi-Fi), 4G, 3GPP Long Term Evolution, WiMAX and HSPA+.
  • 10. SYSTEM OVERVIEW  A single data stream is demultiplexed into M sub streams.  Each sub stream is then encoded into symbols and fed to its respective transmitter.  Transmitters 1 − M operate co-channel at symbol rate 1/ T symbols/sec.  Each transmitter is itself an ordinary QAM transmitter.  The same constellation is used for each substream.
  • 11. Receivers 1 − N are, individually, conventional QAM receivers.  These receivers also operate co-channel, each receiving the signals radiated from all M transmit antennas.  Flat fading is assumed.  The matrix channel transfer function is HN×M, where hi j is the (complex) transfer function from transmitter j to receiver i, and M ≤ N.
  • 12.
  • 13. V-BLAST DETECTION  Let a = (a1 , a2 , . . . ,aM ) T denote the vector of transmit symbols.  Then the corresponding received N vector is r1 = Ha + ν where ν is a noise vector.  Each substream in turn is considered to be the desired signal, and the remainder are considered as "interferers".(Nulling)  Nulling is performed by linearly weighting the received signals so as to satisfy some performance-related criterion, such as minimum mean-squared error (MMSE) or zero-forcing (ZF).  Zero-forcing Nulling can be performed by choosing weight vectors wi , i = 1 , 2 , . . . , M, such that wi T(H) j = δi j  where (H) j is the jth column of H, and δ is the Kronecker delta. Thus, the decision statistic for the ith sub stream is yi = wi T ri
  • 14. project the received signal y onto the subspace orthogonal to the one spanned by h1, h2.......hnt
  • 15. Superior performance is obtained if nonlinear techniques are used.  Use symbol cancellation as well as linear nulling to perform detection.  Interference from already-detected components of a is subtracted out from the received signal vector, resulting in modified received vector in which, effectively, fewer interferers are present.
  • 16. 1. Order determination, in which the N, received substreams are to be detected, in accordance with the post detection signal-to-noise ratios of the individual sub streams. 2. Detection of the sub stream, starting with the largest signal-to- noise ratio. 3. Signal cancellation, wherein the effect of the detected sub stream is removed from subsequent sub streams. 4. Repetition of steps 1 through 3 until all the N, received sub streams have been individually detected
  • 17.
  • 18. (V-BLAST) DECODING  Initialization: Recursion: i 1 wki (Gi ) ki G1 H H 2 y ki wki ri k1 arg min (G1 ) j j ˆ a ki Q ( y ki ) ri 1 ri ˆ a ki ( H ) ki G H (H H H ) 1 H H Gi 1 H ki G (H H H 2 I) 1H H 2 ki 1 arg min (Gi 1 ) j j k1ki i i 1
  • 19.
  • 20. REFERENCES  V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela  Modern wireless communication Simon Haykin , Michael Moher  BLAST Architectures Eduardo Zacar´ıas B.  Fundamentals of wireless communication David Tse , Pramod  Performance Analysis of V-BLAST Detectors for the MIMO channel Fenghua Li