Upcoming SlideShare
×

# Spss Overview

3,595 views

Published on

Published in: Technology
1 Comment
1 Like
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• great work kepp it up buddy

Are you sure you want to  Yes  No
Views
Total views
3,595
On SlideShare
0
From Embeds
0
Number of Embeds
20
Actions
Shares
0
261
1
Likes
1
Embeds 0
No embeds

No notes for slide

### Spss Overview

1. 1. SPSS OVERVIEW By Brijendra Tripathi
2. 2. Flow of Presentation <ul><li>Basic SPSS functions </li></ul><ul><li>Linear Regression </li></ul><ul><li>One Way Anova </li></ul><ul><li>Factor Analysis </li></ul>
3. 3. Basic SPSS Functions <ul><li>Data view and Variable view </li></ul><ul><li>Mean , Standard Deviation </li></ul><ul><li>Splitting the file(Data->Split File) </li></ul><ul><li>Combining several factors into one factor.(Transform->Compute variable) </li></ul><ul><li>Correlation </li></ul>
4. 4. Correlation <ul><li>Analyze Correlate Bivariate </li></ul><ul><li>The null hypothesis states that the correlation is equal to zero. </li></ul>
5. 5. The null hypothesis is that the population coefficient of correlation between the pretest and the final exam is zero. The alternative hypothesis is that  the population coefficient of correlation between the pretest and the final exam is significantly different from zero
6. 6. Correlation <ul><li>Examine the output. For a p-value of .000, report It as p < .001 </li></ul>
7. 7. Linear Regression <ul><li>AnalyzeRegressionLinear. </li></ul><ul><li>2. Place handgun in the Dependent box and place mankill in the Independent box. </li></ul><ul><li>3. Statistics button to set confidence interval. </li></ul>
8. 8. Linear Regression
9. 9. Linear Regression
10. 10. Linear Regression
11. 11. Linear Regression
12. 12. One Way Anova <ul><li>Write the null hypothesis: H 0 : µ Math = µ English = µ Visual Arts = µ History </li></ul><ul><li>Where µ represents the mean GPA. </li></ul><ul><li>2. Write the alternative hypothesis: H 1 : not H 0 </li></ul><ul><li>3.Specify the α level: α = .05 </li></ul>
13. 13. One Way Anova
14. 14. One Way Anova
15. 15. One Way Anova
16. 16. One Way Anova
17. 17. One Way Anova
18. 18. The final column gives the significance of the F ratio. This is the p value. If the p value is less than or equal your α level, then you can reject H 0 that all the means are equal. In this example, the p value is .511 which is greater than the α level, so we fail to reject H 0 . That is, there is insufficient evidence to claim that some of the means be different.
19. 19. Factor Analysis <ul><li>Meaning </li></ul><ul><li>Factor Loading </li></ul><ul><li>Eigen Value </li></ul><ul><li>Process </li></ul><ul><li>Analyze -> Data Red -> Factor -> all variables </li></ul><ul><li>descriptive->KMO Test </li></ul><ul><li>Rotation ->varimax </li></ul>
20. 20. <ul><li>Thank You </li></ul>