Maswar, Fahmuddin Agus,Meine van Noordwijk, Supiandi Sabiham  Oteng Haridjaja
Introduction Tropical peat lands conditions-1985-2000, 20% (1.3% per yr) Indenesian peat forest convertion- Concession Are...
Tropical Peat Lands Problems• Deforestation/Conversion• Drainage, (for tree crops)• Forests Fire
• The carbon losses due to drainage fire                              drainage, fire,  fertilization and their combination...
Global impacts        Global Warming & Cli t Ch                      Gl b l W   i     Climate ChangeLocal impacts        p...
Objectives1. To evaluate methods and tools for measurement   carbon content of peat soils.2. To evaluate C loss in peat la...
Reseach Location, in West Aceh, Sumatera     Cot Gajah Mati Village                              Simpang VillageDesa Suak ...
PeatP t                                        Peat+ashbefore                                         afterfire           ...
Triangulation of methods to            estimate C loss1. Direct flux 2. Subsidence 3. Ash increase  measurement = compacti...
Evaluation Tools for maesurement BD                                                                     Box sampler 30 x 3...
Evaluation methods for determination peat                 carbon content                                    60       C-org...
Evaluation for Emisi CO2No significant different between chamber and LOI methods toestimation CO2 emission CO2   N     Mea...
Carbon loss estimates from forests fire:• Simpang village:  92.16 ton C ha-1 ~ 338.23 ton CO2 ha-1• C t G j h M ti village...
Carbon loss estimates from forest fire with     Loss on     Loss-on Ignition (LOI) methods BD (gr cm-3)         Ash conten...
Estimates of C- loss up to 13 t C ha-1 yr-1 foryyoung oil p     g    palm and less than 2 t C ha-1 yr-1 for               ...
• Water table < 52 cm from soil surface, lowest CO2  emissiom for all land use• CO2 emission for rubber agroforestry 15 yr...
Maximum d thM i         depthof water table isa primary deter-  p      yminant of netCO2 emissions,but there is anapparent...
1    Bulk density of the peat directly influencesA hydraulic conductivity and water retention curves              50% decr...
Depth of groundwater table depends1                     on:B      water level in the drainage canal,                     ...
Fertilization can increase C loss and CO2 emissionof peat, i.e. in fertilization plot CO2 emission 23 - 48ton C ha-1 yr-1 ...
The difference between C accumulation and C loss for rubberagroforests (>15 year age), and oil palm agroforests (> 15 year...
Time effect on CO2 emissions: negative feedback             or resource depletion?
Highlights from the research:• Carbon loss from peat drained affect by drainage age,  and distance from drain (following l...
Suggestion    To reduce C loss on peat lands for tree crops    production systems:•   Water t bl    W t table management, ...
Biomass ’waste’ management on peat survace  can accumulate carbon i.e 32 – 342 g of each kg  dry  d weight        i htLoca...
Biomass ‘waste’ performance after 14months decomposition on peat surfacelayer (From: litter bags experiment)
Simpang Village                                       U                    S  Disturb Forest                              ...
Suak Raya Village                                                        U            Road                    Oil Palm, 15...
Suak Puntong Village                               U                                             S                        ...
Cot Gajah Mati Village± 3 Km                    Meulaboh – Calang Road                    M                               ...
New perspectives on reducing peatland emissions from oil palm
New perspectives on reducing peatland emissions from oil palm
Upcoming SlideShare
Loading in …5
×

New perspectives on reducing peatland emissions from oil palm

836 views
782 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
836
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
23
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

New perspectives on reducing peatland emissions from oil palm

  1. 1. Maswar, Fahmuddin Agus,Meine van Noordwijk, Supiandi Sabiham Oteng Haridjaja
  2. 2. Introduction Tropical peat lands conditions-1985-2000, 20% (1.3% per yr) Indenesian peat forest convertion- Concession Areas in Indonesia: Oil palm (28.009 km2) and HTI (19.923 km2) on peat lands (27% eachs )- Hot isue 2006: Indonesian GHG, No. 3 of global, (2/3 from peat lands)(Source: Hooijer et al., 2006)
  3. 3. Tropical Peat Lands Problems• Deforestation/Conversion• Drainage, (for tree crops)• Forests Fire
  4. 4. • The carbon losses due to drainage fire drainage, fire, fertilization and their combination are probably a major component in global GHG emission.• Robust methods are needed to opportunities for emission reduction of peat lands use for tree crops production system
  5. 5. Global impacts Global Warming & Cli t Ch Gl b l W i Climate ChangeLocal impacts p Subsidence CO2 Compaction C loss Decomposition Tree Crops Peat Land: • Characteristics, • Drainage: water table • Management: (fertilization, biomass)
  6. 6. Objectives1. To evaluate methods and tools for measurement carbon content of peat soils.2. To evaluate C loss in peat lands under several land use and condition
  7. 7. Reseach Location, in West Aceh, Sumatera Cot Gajah Mati Village Simpang VillageDesa Suak Raya Village Desa Suak Puntong Village Source: ISRI (2006)
  8. 8. PeatP t Peat+ashbefore afterfire fire Natural forest Rubber R bb agroforest on peat with fern (Nephrolepis)
  9. 9. Triangulation of methods to estimate C loss1. Direct flux 2. Subsidence 3. Ash increase measurement = compaction indicates C- Snapshot p + a C-loss loss Equations in time that use Subsidence ash as is measu measu- red with internal metal rod, marker anchored below the peat; yearly Scaled up p measure- to yearly ment flux
  10. 10. Evaluation Tools for maesurement BD Box sampler 30 x 30 x 10 cm3 0.35 y = 0.9988x Box sampler 30 x 30 x 10 cm3 R2 = 0 97 0.97 0.3 03 AugerBD othe tools (gr cm-3) 0.25 Ring Auger 0.2 02 ( y = 1.136x 0.15 R2 = 0.48 ers 0.1 Ring 0.05 y = 1.301x R2 = 0.79 0 0 0.05 0.10 0.15 0.2 0.25 BD with box sampler 50 x 50 x 10 (gr cm-3) BD representatif = Auger value : 1.136 BD representatif = Ring value : 1.301
  11. 11. Evaluation methods for determination peat carbon content 60 C-organic with Walkley and y = 0.5203x x : y = 1.922 ► Konstanta 55 R2 = 0 6185 0.6185 y Black (%) 50 45 40 35 80 85 90 95 100 Organic matter with LOI method (%) %C-org = 0.5203 x % OM OM = 1 ~ C-org = 0.5203 %OM (LOI) : %C (Walkley dan Black) ►1 : 0.5203 = 1.922 ( ) ( y )K = 1,922.(New for tropical peat soils) ; 1,724 (General) ; 12% >
  12. 12. Evaluation for Emisi CO2No significant different between chamber and LOI methods toestimation CO2 emission CO2 N Mean Std. Std. Variances T DF Prob>|T| Deviasi ErrorChb. 41 24,217 22,618 3,532 Unequal -1,423 73,0 0,1588LOI 35 31,469 21,716 3,671 Equal -1,4190 74,0 0,1601For H0: Variances are equal, F = 1,08 DF = (40,34) Prob>F = 0,8135ns
  13. 13. Carbon loss estimates from forests fire:• Simpang village: 92.16 ton C ha-1 ~ 338.23 ton CO2 ha-1• C t G j h M ti village: Cot Gajah Mati ill 133.38 ton C ha-1 ~ 489.50 ton CO2 ha-1 Simpang p g Before burning g Cot Gajah Mati Before burning
  14. 14. Carbon loss estimates from forest fire with Loss on Loss-on Ignition (LOI) methods BD (gr cm-3) Ash content (%) Ash content (gr cm-3)Natural Forests Natural Forests Natural ForestsForests fire Forests fire Forests fire Simpang Village 0.07 0.15 2.676 8.57 0.0019 0.0118 Cot Gajah Mati Village j g 0.19 0.278 11.432 19.236 0.0216 0.0543
  15. 15. Estimates of C- loss up to 13 t C ha-1 yr-1 foryyoung oil p g palm and less than 2 t C ha-1 yr-1 for yrubber 15 yr age. Location/ Peat Tree C loss Equivalent Village Land use thickness age (t. ha-1 yr-1) CO2 (cm) (yr) emission (t. ha-1 yr-1)Cot Gajah MatiC G Disturb Forests 227 - 3.84 3 84 14.1 14 1Cot Gajah Mati Oil Palm 227 1 13.1 48.1Simpang Disturb Forest 1000 - 3.45 12.6Simpang Rubber 166 15 0.651 2.39Simpang Bushes I 621 - 8.55 31.4S pa gSimpang Bushes II us es 349 - 89 8.97 3 9 32.9Suak Puntong Oil Palm I 126 10 10.6 38.9Suak Puntong Oil Palm II 118 10 11.1 40.6Suak Raya Rubber 482 15 1.596 1 596 5.82 5 82Suak Raya Oil Palm I 424 15 6.87 25.2Suak Raya Oil Palm II 15 15 1.18 4.34
  16. 16. • Water table < 52 cm from soil surface, lowest CO2 emissiom for all land use• CO2 emission for rubber agroforestry 15 yr age ~ disturb forests ≤ 52 cm 53 - 89 cm ≥ 90 cm 80 missoni (ton ha-1 yr-1) 70 Forest 60 Bushes 50 Rubber ( 40 Oil Palm 30 20 CO2 Em y = 1,309x – 90,606 10 R2 = 0.6273 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 0 0 0 Maximum water table (cm)
  17. 17. Maximum d thM i depthof water table isa primary deter- p yminant of netCO2 emissions,but there is anapparent ‘timeeffect’ as well
  18. 18. 1 Bulk density of the peat directly influencesA hydraulic conductivity and water retention curves 50% decrease in  50% d i hydraulic conductivity  manifold increase in  manifold increase in water retention
  19. 19. Depth of groundwater table depends1 on:B water level in the drainage canal, g , distance to the nearest drain, distance between drains hydraulic conductivity land subsidence y = 0 8914x 0.8914x R² = 0.8909 On the deepest peat (> 9 m), the water can more easily reach the drain  the Metal rod inserted into profile of fil f mineral soil to ground water measure table depths is subsidence more ‘flat’
  20. 20. Fertilization can increase C loss and CO2 emissionof peat, i.e. in fertilization plot CO2 emission 23 - 48ton C ha-1 yr-1 or 84 – 180 ton CO2 ha-1 yr-1 higherthan no fertilizer plot Ash content (%) BD (g,cm-3) CO2 Location Land use C-loss Emission No No Fertilizer (t ha-1) (t ha-1) Fertilizer Fertilizer Fertilizer F ili (t. 1 (t. 1Simpang Forests 5.68 3.77 0.13 0.12 18.1 66.3Simpang Shrub 7.22 6.13 0.19 0.14 20.1 73.9Simpang Rubber 8.23 6.06 0.18 0.14 25.1 92.1Suak Raya Oil Palm I 5.63 3.15 0.17 0.17 32.1 120Suak Raya Oil Palm II 6.91 4.57 0.22 0.27 15.3 56.2Average 6.73 a 4.74 b 0.18 a 0.17 a 22.14 81.7Note: The data shown in the Table, based on 8 month period field experiment
  21. 21. The difference between C accumulation and C loss for rubberagroforests (>15 year age), and oil palm agroforests (> 15 yearage) on shallow peat indicated have a positive value Location/ C loss C C difference Land use Plant age a t Village (ton ha-1 accumulation (tahun) th-1) (ton ha-1 th-1) (ton ha-1 th-1)Cot Gajah Mati 3.84 1.73 -2.11 Forest disturb -Cot Gajah Mati 13.106 0 -13.11 Oil Palm 1Simpang 3.446 1.73 -1.72 Forest disturb -Simpang 0.651 - - Rubber 15Simpang 8.554 - - Bushes I -Simpang 8.974 - - Bushes II -Suak Puntong 10.594 2.13 -8.46 Oil Palm I 10Suak Puntong 11.074 2.13 -8.94 Oil Palm II 10Suak Raya 1.586 - - Rubber 15Suak Raya y 6.874 1.43 -5.44 Oil Palm I 15Suak Raya 1.183 1.43 0.25 Oil Palm II 15Note: (-) no data
  22. 22. Time effect on CO2 emissions: negative feedback or resource depletion?
  23. 23. Highlights from the research:• Carbon loss from peat drained affect by drainage age, and distance from drain (following logarithmic pattern).• Carbon accumulation from the biomass ’waste’ 7 – 75% equivalent 32 – 342 gr C per kg biomass.• F tili ti increase C l Fertilization i loss i (23 - 49 t C h -1 yr-1 i.e. ton ha 1 1 or 8.02 – 180 ton CO2 ha-1 yr-1 ) higher than no fertilizer .• Forests fire was one of the higest carbon emission from peat drained : 92.16 – 13.,38 ton C ha-1 or 338.23 – 489.50 489 50 ton CO2 ha-1• CO2 emission from Rubber (traditional management) similar with disturbed forest.
  24. 24. Suggestion To reduce C loss on peat lands for tree crops production systems:• Water t bl W t table management, to minimize peat t t i i i t decomposition.• Use plant that can adaptation with peat condition• Precise technique (time, methods, types and dosage) for fertilizer application. g ) pp• Fire-free in production (agriculture) systems• Strive for land surface by minimal weeding weeding.
  25. 25. Biomass ’waste’ management on peat survace can accumulate carbon i.e 32 – 342 g of each kg dry d weight i htLocation Land use Biomass Biomass loss Carbon loss Eqn. CO2 (g kg-1) (g kg-11) (g kg-11)Simpang Forest disturb Pandan 924.5 440.99 1618.42Simpang Rubber Lampiding 592.6 272.00 998.25 Melastoma 898.1 898 1 418.51 418 51 1535.95 1535 95Simpang Bushes Lampiding 618.0 283.66 1041.04 Melastoma 798.5 372.10 1365.61Cot Gajah Mati Oil Palm Mankire 823.0 384.34 1410.53 Melastoma 931.1 433.89 1592.39Suak Raya Rubber Rubber 803.5 374.43 1374.16 Lampiding 804.1 369.08 1354.53Suak Raya Oil Palm Oil Palm 830.7 402.06 1475.56 Melastoma 875.5 407.98 1497.30 Lampiding 254.3 116.72 428.38Suak Puntong Oil Palm Lampiding 638.0 292.84 1074.73 Oil Palm 768.7 372.05 1365.43 Melastoma 784.1 365.39 1340.98
  26. 26. Biomass ‘waste’ performance after 14months decomposition on peat surfacelayer (From: litter bags experiment)
  27. 27. Simpang Village U S Disturb Forest 37 m 230 m 700 00 • In 1992 242 Ha area logged over 1992, forest + burned, Bushes • Fallow until 2006. • E l 2007 D i constructed Early 2007, Drain t t d (4m wide x 3 m deep & 3700 m g) long). • No weeding for rubber (traditional) plantationRubber, 15 yr age
  28. 28. Suak Raya Village U Road Oil Palm, 15 yr age Sampling point S Rubber Oil palm I ± 4m peat ± 4m peat depth 50m 5 depth Oil palm II 140m ± 1.25 m peat Rubber, 15 yr age depth• In 1987, Logged over forest Drainage• Drain (1,5m wide and 1,5m deep), 130m• Rubber: R bb no weeding di Drainage• Oil Palm : every four month weeding
  29. 29. Suak Puntong Village U S 50 m• In 2008, reconstruction drain: Sampling point 2.5 m wide and 2 m deep p• Oil palm weeding: every six month and let it in surface Drain Road
  30. 30. Cot Gajah Mati Village± 3 Km Meulaboh – Calang Road M Oil Palm, 1 yr age Drainage 380 mL= 3m g Disturb ForestD=1.5m Sampling Point S • In 2006, drain constructed Size:3 m wide and 1.5 m deep. p Oil Palm • Distance between two drain 380 m. • In 2007, 500 Ha logged over forests U + burned Forest • In 2008, Oil palm planted.

×