Loading…

Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Like this presentation? Why not share!

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
378
On Slideshare
376
From Embeds
2
Number of Embeds
2

Actions

Shares
Downloads
40
Comments
0
Likes
0

Embeds 2

http://artej.projects.aftersun.be 1
http://www.slideee.com 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Shoulder JL Gielen J Veryser
  • 2. Index • Normal Anatomy • Examination Procedure • Pathology US MR
  • 3. Index • Normal Anatomy • Examination Procedure • Pathology US MR
  • 4. Cuff Ultrastructure • Layer 1: corocohumeral ligament superficial fibres • Layer 2: thick main cuff portion: parallel bundles • Layer 3: thick cuff portion: smaller bundles with less uniform oriëntation • Layer 4: rotator cable or transverse band, force distribution through perpendicular bundle orientation, deep fibres of coracohumeral ligament • Layer 5: capsule, random fibre orientation US MR
  • 5. Rotator Cable (C) and Crescent (B) Cable: transverse force distribution Articular side tears at cable: greater functional impact US MR
  • 6. Coracohumeral Ligament Medial Lateral US MR
  • 7. Index • Normal Anatomy • Examination Procedure • Pathology US MR
  • 8. Radiograph US
  • 9. Radiograph Decubitus Dorsalis Endorotatio US
  • 10. Ultrasound • Scanning procedure • Minimal still image requirements US
  • 11. Infraspinatus: Muscle > Tendon Insertion US
  • 12. AC Joint Neutral Cross Arm Test US
  • 13. AC Joint AC Joint Clavicular compression US
  • 14. Superior-Posterior Labrum US
  • 15. Superior-Posterior Labrum US
  • 16. Internal Impingement Test • Video Endo>Exorotatie US
  • 17. Crass Infraspinatus T Infraspin US
  • 18. Crass Infraspinatus T Infraspin US
  • 19. Crass Infraspinatus T Infraspin US
  • 20. Crass Supraspinatus T Supraspin US
  • 21. Crass Infraspinatus T Transverse IS US
  • 22. Crass Supraspinatus T Transverse SS US
  • 23. Crass Supraspinatus T Transverse SS Interval US
  • 24. Neutral Cuff Interval Transverse SS Interval US
  • 25. Exorotation Sulcus Intertubercularis Transverse Biceps CL US
  • 26. Exorotation Biceps C L Longitudinal Biceps CL US
  • 27. SS Crass Modified Crass
  • 28. Modified Crass SS and Biceps
  • 29. Modified Crass SS
  • 30. Modified Crass Coraco-acromial Ligament US
  • 31. Coraco-acromial Ligament, Dynamic Examination US
  • 32. Coracohumeral ligament Superior glenohumeral lig Distal superficial part US
  • 33. Exorotation Coracohumeral ligament Origin US
  • 34. Coracohumeral Ligament Test • Video Endo>Exorotatie US
  • 35. Exorotation Subscapular T Supscapular US
  • 36. Exorotation Subscapular T Supscapular US
  • 37. Pectoralis M T Teres Major Latissimus Dorsi Pect Major US
  • 38. Supraspinatus M SS Muscle Mass US
  • 39. Suprascapular Notch Suprascap Notch US
  • 40. Suprascapular Notch Suprascap Notch US
  • 41. Glenohumeral Capsule Axillary Aproach US
  • 42. Reference Level: Axial C6 Root STCLM Long Col Jug I A Car C6 Scal Ant US
  • 43. Reference Level: Axial C6 Root US
  • 44. Axial Roots C 5-6-7 Scal Ant Scal Med Scal Post STCLM US
  • 45. Roots Coronal-Oblique C6 US
  • 46. Roots Coronal-Oblique C7 US
  • 47. Roots Coronal-Oblique C5 US
  • 48. Roots Coronal-Oblique C4 US
  • 49. Ultrasound • Scanning procedure • Minimal still image requirements: • Annotations!!, lateralisation!! – AC joint longitudinal: with cross arm test – RC components longitudinal with thickness • SS, SSC, IS – Subdeltoid space thickness – RC interval – Biceps long head longitudinal – Pathology US
  • 50. Ultrasound Abduction Endorot: AC > IS > SS US
  • 51. Ultrasound Abduction Endorot: Transverse US
  • 52. Ultrasound Neutral Position: Interval - Biceps US
  • 53. Ultrasound Neutral Position: Biceps tendon US
  • 54. Ultrasound Neutral Position US
  • 55. Ultrasound Exorotation: Subscapularis US
  • 56. Index • Normal Anatomy • Examination Procedure • Pathology US MR
  • 57. Pathology • Minor Glenohumeral Instability • Cuff Lesions • AC Joint • Biceps Caput Longum • Impingement US MR
  • 58. Minor Glenohumeral Instability • Purpose: Detection and Grading of – Causes of minor shoulder instability • Anatomical variants • Congenital disorders • Lesions – Lesions due to (minor) shoulder instability • Techniques – Radiography – Ultrasound – CT-arthrography – MRI, direct and indirect arthro-MRI US MR
  • 59. Minor Shoulder Instability • Static Constraints • Dynamic Constraints US MR
  • 60. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  • 61. Dynamic Constraints • Rotator cuff – Through Joint Compression – Individual components of rotator cuff – Rotator cuff through preloading glenohumeral ligaments • Long head of biceps tendon • (Supporting musculature) • (Proprioception and reflexes) • (Scapulothoracic motion) US MR
  • 62. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  • 63. Subacromial Bursitis Normal US MR
  • 64. ♀WH °620609 ed 110701 RA: Biceps Tendon Sheat, Subdeltoid Bursa US
  • 65. Dynamic Constraints • Rotator cuff – Through Joint Compression – Individual components of rotator cuff – Through preloading glenohumeral ligaments • Long head of biceps tendon • (Supporting musculature) • (Proprioception and reflexes) • (Scapulothoracic motion) US MR
  • 66. Rotator Cuff Components • Supraspinatus • Infraspinatus • Teres minor • Subscapularis – tendinous insertions merge with glenohumeral joint capsule and ligaments US MR
  • 67. Rotator Cuff Lesions • Histologic abnormalities:  50% age > 40y – glycosaminoglycan infiltration – fibrocartilaginous transformation – loss of collagen fiber organisation – degenerative changes • Inflammatory infiltrates not predominant ! • Clinical and functional relevance? US MR
  • 68. Cuff Ultrastructure • Layer 1: corocohumeral ligament superficial fibres • Layer 2: thick main cuff portion: parallel bundles • Layer 3: thick cuff portion: smaller bundles with less uniform oriëntation • Layer 4: rotator cable or transverse band, force distribution through perpendicular bundle orientation, deep fibres of coracohumeral ligament • Layer 5: capsule, random fibre orientation US MR
  • 69. Rotator Cable (C) and Crescent (B) Cable: transverse force distribution Articular side tears at cable: greater functional impact US MR
  • 70. Rotator Cuff Injury: Etiology • Intrinsic mechanism – Direct tendon overload – Intrinsic degeneration – Location: intratendinous, critical area • Extrinsic mechanism – Compression against surrounding structures  impingement – Subacromial impingement • Painfull arc: 60 – 120° humeral elevation • Location: tendon insertion US MR
  • 71. Rotator Cuff Lesions • Tendinopathy-tendinosis – Calcific tendinosis • Partial thickness tear (PTT) • Full thickness tear (FTT) and complete tear (CT) • Interval tears • Subscapularis and pectoralis major tear • Postoperative repair US MR
  • 72. Calcifying tendinosis Tendinosis - swellingSA-SD bursitis Normal US
  • 73. Rotator Cuff Calcifications Reflective tendon bundle: stony lane US
  • 74. Calcifying Tendinopathy 1. Silent phase 2. Mechanical phase 1. elevation of bursal floor 2. subbursal rupture 3. intrabursal rupture US MR
  • 75. SS Calcification US MR
  • 76. SS Calcification, Bursal Extrusion MR
  • 77. ♀VDEO °500507 ed 110310 US MR
  • 78. ♀VDEO °500507 ed 110310 Calciumextrusion bursa, Calcium milk at SS US MR
  • 79. Subscapular Calcification Anterior Impingement US
  • 80. Male WW °640416 ed 110218 Acute Shoulder Pain Started 4 Days Ago • Calcium extrusion to subbursal floor at anterior portion of subdeltoid bursa US
  • 81. Male BM °580608 ed110318 US Calcium Milk at SADB Rotator Interval widened, Tear SSC and SS US
  • 82. Pectoralis Major Tendon Calcification Courtesy of L. Carpentier US
  • 83. SS Tendinosis • Hypoechogenic • Swollen • Loss of normal fibrillar pattern US
  • 84. Cuff Tears • Partial Thicknesstears (PTT) – Bursal – Articular • Fraying, rimrent – Intrasubstantial • Full thicknesstears (FTT) – Partial width – Complete: full width • retraction, fatty atrophy US MR
  • 85. Supraspinatus Tear Partial Thickness Articular Side Bursal Side US MR
  • 86. Supraspinatus Tear Fraying, Bursal Side US MR Cor Intermed FS Cor T1 FS Gad Sag T1 Gad
  • 87. Supraspinatus Tear, Insertion Area Partial Thickness, Bursal Side US MR
  • 88. Supraspinatus Tear Partial Thickness, Bursal Side US
  • 89. Supraspinatus Tear Intrasubstantial, delamination US MR
  • 90. ♀ DGA °460315 US MRI Insertion Tendinosis with Delamination SS Cor T1 FS Gad Cor Intermed FS US MR
  • 91. Supraspinatus Tear Small Full Thickness Ultrasound ArthrographyArthro-CT US MR
  • 92. Indirect Arthro: Small Full Thickness SS Tear US MR Cor Intermed FS Cor T1 FS Gad
  • 93. Female, LC °550426 SS Full Thickness Tear, Critical Area US MR
  • 94. Supraspinatus Full Thickness and Full Width: Complete US MR
  • 95. Direct Arthro-MRI Supraspinatus Tear Full Thickness, Tendon Insertion US MR
  • 96. Female A-CH °480701 MR US Total Thickness Tear SS US
  • 97. Female A-CH °480701 MR US Total Thickness Tear SS US
  • 98. End Stage Naked Tub. Maius Effusion AC-joint Effusion Subdelt. Caput Longum Bic. Supraspinatus tear US
  • 99. Grading RC Tears • FT: Dimensions Anteroposterior and lateral • CT: Goutallier – Position of retracted SS tendon relative to the acromion • Grade 1: lateral to the acromion • Grade 2: subacromial • Grade 3: medial to the acromion MR US
  • 100. Grading Supraspinatus Muscle Atrophy: MRI and CT • Complete or Massive Supraspinatus Tear • Goutallier classification: – 0 = no intramuscular fat – 1 = some fatty streaks – 2 = fat less extensive than muscle – 3 = fat equal to muscle – 4 = fat more extensive than muscle Clin Orthop Relat Res. 1994 Jul;(304):78-83. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. US MR
  • 101. Massive Supraspinatus Tear Supraspinatus Muscle Evaluation: CT and MRI • Fatty infiltration: – Goutallier classification: – 2 = fat less extensive than muscle • Muscle volume: – Zanetti Tangent Sign – +: muscle below tangent line Clin Orthop Relat Res. 1994 Jul;(304):78-83. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. US MR
  • 102. Supraspinatus Muscle Atrophy: US grading • Structure – 0 = clearly visible muscle contours, fibers, and central tendon – 1 = partially visible structures – 2 = structures no longer visible • Echogenicity in comparison to deltoid muscle – 0 = iso- or hypoechoic – 1 = slightly more echoic – 2 = markedly more echoic • Substantial fatty atrophy = grade 2 in at least one of the evaluated US criteria Strobel et al. Fatty atrophy of the supraspinatus, accuracy of US. Radiology 2005 US
  • 103. Massive Supraspinatus Tear Supraspinatus Muscle Evaluation: CT and MRI • Muscle volume: • Zanetti Tangent Sign – +: muscle below tangent line Invest Radiol. 1998 Mar;33(3):163-70. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Zanetti M, Gerber C, Hodler J. US MR
  • 104. Supraspinatus M SS Muscle Mass US
  • 105. • Fatty infiltration: Goutallier classification: – 0 = no intramuscular fat – 1 = some fatty streaks – 2 = fat less extensive than muscle – 3 = fat equal to muscle – 4 = fat more extensive than muscle • Muscle volume: Zanetti Tangent Sign – +: muscle below tangent line Invest Radiol. 1998 Mar;33(3):163-70. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Zanetti M, Gerber C, Hodler J. US MR Massive Supraspinatus Tear Supraspinatus Muscle Evaluation: CT and MRI
  • 106. SS-IS CT grade 3 Grade 3 Fat Infiltration Positive Zanetti Tangent Sign US MR
  • 107. ♀, DSE °520518 ed 100225, Postop SS Massive Tear, Deltoid Tear Sag T1 Cor T2 FS US MR
  • 108. ♀, DSE °520518 ed 100225, Postop SS Massive Tear, Deltoid Tear US MR
  • 109. Indirect Arthro Postop SS Reinsertion US MR
  • 110. ♂, FJ °510611 ed 100526 Massive Tear SS without atrophy and IS with atrophy US
  • 111. ♂, FJ °510611 ed 100526 Massive Tear SS without atrophy and IS with atrophy US
  • 112. Accuracy Sens Spec Acc PPV Correlation (r) Tear Measurement Plain MRI FTT 85% 83% 83% 99% Plain MRI PTT 83% 85% 39% Plain MRI FTT> 1cm 96% 83% 83% Arthrography All lesions 96% 75% 89% 0.90 (0.46 retear) US Tear 91% 86% 89% US MR
  • 113. Rotator Cuff Interval SSC SS Max 10 mm Transverse SS Interval US
  • 114. Interval Lesions Supraspinatus Full Thickness Tear, Tickening Biceps CL BIC Coracohumeral Transverse Lig US
  • 115. Dynamic Constraints • Rotator cuff – Through Joint Compression – Individual components of rotator cuff – Rotator cuff through preloading glenohumeral ligaments • Long head of biceps tendon • (Supporting musculature) • (Proprioception and reflexes) • (Scapulothoracic motion) US MR
  • 116. Biceps Tendon (Sub)luxation CT –Arthrography US MR
  • 117. Subluxation Biceps Tendon US Axial T1 FS Gad
  • 118. Biceps Dislocation, Deep to SSC Sup to Teres Major US MR
  • 119. ♀ DDI °651002 ed1 30314 SS Complete Tear, Biceps CL superficial to SSC Cor T1 FS Gad Cor T1 FS Gad Sag T1 Gad Sag T1 Gad US MR
  • 120. Dynamic Constraints • Rotator cuff – Through Joint Compression – Individual components of rotator cuff – Rotator cuff through preloading glenohumeral ligaments • Long head of biceps tendon • Supporting musculature • (Proprioception and reflexes) • (Scapulothoracic motion) US
  • 121. Tear Teres Major – Lattisimus Dorsi US
  • 122. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  • 123. Dysplasia, malformations Discongruent GH Joint Normal joint US MR
  • 124. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  • 125. AC Dislocation US Type II Type III
  • 126. Female, DRE °940929 Traction Epiphysiolysis R Proximal Humeral Epiphysis US
  • 127. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  • 128. ♂DJH °550301 ed 120715 Retractile Capsulitis, SLAP VIII Cor T1 FS Gad Cor T1 FS Gad Ax T1 FS Gad Sag T1 FS GadCor Intermed FSCor Intermed FS US MR
  • 129. ♂VDVL °621208 ed100422 US Retractile Capsulitis Axillary Examination, Endorotation deficit US
  • 130. ♀, EMF °710314 Retractile Capsulitis, Glenohumeral Distension US”A” US
  • 131. ♀, EMF °710314 Retractile Capsulitis, Glenohumeral Distension US”A” US
  • 132. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  • 133. Coracoacromial Arch • Acromion • Coracoacromial ligament • Coracoid process Roof above supraspinatus tendon: outlet through which tendon must pass US
  • 134. Subacromial Space Coracoacromial arch area Indirect MR-arthrography SE T1 WI US MR
  • 135. Impingement • Subacromial • Subcoracoidal - anterior • Anterocranial • Internal US MR
  • 136. Impingement Classification • Primary (external) impingement – anatomy / static • Subacromial impingement • Anterior - Subcoracoid impingement • Secondary (internal) impingement – biomechanics / dynamic • Internal or Posterior superior impingement (Walsh) • Anterior superior impingement (Gerber) US MR
  • 137. Impingement • Subacromial (classical) – Elevation, abduction • Acromion <- >Tuberculum major • SA-SD bursa • Supraspinatus US MR
  • 138. Contusion, Mechanical Osteitis Indirect MR-A SE T1 FS US MR
  • 139. Erosions, Sclerosis OA AC Calcifications Radiography Impingement US
  • 140. Subacromial Spur Post Acromioplasty US
  • 141. Acromion Bigliani Types 1 flat Plain radiograpy: Scapular Y-view 2 curved 3 hooked US MR
  • 142. Acromion Type 4 US MR
  • 143. Type 3: increased likelihood of being associated with full-thickness cuff tear US MR
  • 144. Os Acromiale US MR
  • 145. Subacromial Spur Direct MR-arthrography Ref.:Magnetic Resonance Imaging in Orthopaedics and Sports medicine David W. Stoller; 2nd ed. US MR
  • 146. Coracoacromial Ligament Thickening - Inflammation TSE T2 FS SE T1 FS Gad SE T1 FS Gad US MR
  • 147. Acromioclavicular Joint OA, Impingement, SS lesion Indirect arthro-MR US MR
  • 148. Impingement • Subcoracoid, anterior – Endorotation • Coracoid process <-> Tub minor • Subscapularis tendon • Interval: coracohumeral ligament, Biceps tendon US MR
  • 149. Subcoracoidal Space US MR
  • 150. SSC FT Tear US MR
  • 151. Indirect Arthro SS full thickness tear, Subcoracoidal impingement US MR
  • 152. Indirect Arthro SS full thickness tear, Anterior impingement (2) US MR
  • 153. ♂, BH °361218 Fall on Shoulder Complete SS tear US
  • 154. ♂, BH °361218 Fall on Shoulder Complete SS tear, Biceps CL Dislocation US
  • 155. ♂, BH °361218 Fall on Shoulder Complete SS tear, Biceps CL Dislocation, SSC tear US
  • 156. ♂ BE °350123 ed20100527 US Geiser Phenomenon, Complete SS and IS Tear, Biceps Disclocation deep to the SSC US
  • 157. ♂ BE °350123 ed20100527 US Geiser Phenomenon, Complete SS and IS Tear, Biceps Disclocation deep to the SSC US
  • 158. ♂ BE °350123 ed20100527 US Geiser Phenomenon, Complete SS and IS Tear, Biceps Disclocation deep to the SSC US
  • 159. ♂ MH °480129 US Biceps CL Dislocation US
  • 160. ♂ °441001 US Longitudinal split CL Biceps, tenovaginitis US
  • 161. ♂ °441001 US CL Biceps Subluxation with Longitudinal Split and Tenovaginitis US
  • 162. ♂AK °730403 US CR Hypertrophic Ossification SSC with Subcoracoidal Impingement US
  • 163. ♂AK °730403 US CR Hypertrophic Ossification SSC with Subcoracoidal Impingement US
  • 164. Impingement • Anterosuperior Impingement – Follow through phase – RC interval • Cranial glenohumeral ligament • Coracohumeral ligament – Biceps CL tendon – Subscapularis tendon • Cranial portion US MR
  • 165. 6. Follow through: endorotation: anterior US MR
  • 166. Secondary anterosuperior impingement • Mechanisms • Pathology on imaging – Subscapularis tears – Anterosuperior labrum tear – CL pulley lesions – Degenerative changes anterior glenoid/ humerus US MR
  • 167. °641216 ed 120308 Anterosuperior Impingement, Normal Cuff Biceps Pulley Thickening No Capsulitis US
  • 168. US MR
  • 169. Coracohumeral Ligament US MR
  • 170. Anterosuperior Impingement Type II acromion Subacromial spur formation Inflammation –Anterior: peribursal, rotator cuff interval, coracohumeral ligament US MR
  • 171. Rotator Cuff Interval SSC SS Max 10 mm Transverse SS Interval US MR
  • 172. Interval Lesions Supraspinatus Full Thickness Tear, Tickening Biceps CL BIC Coracohumeral Cranial GH Lig US MR
  • 173. Bicepstendon (sub)luxation Arthro-CT US MR
  • 174. Subluxation Biceps Tendon US MR
  • 175. Impingement • Internal, posterior glenoid – ABduction ExoRotation • Glenoid <-> Tub Majus post • Undersurface SS post, IS ant • Labrum US MR
  • 176. Secondary posterosuperior impingement • Anatomic landmarks – Posterosuperior humerus – Posterosuperior glenoid • Target – Infraspinatus/ posterior supraspinatus • Clinical findings – Late-cocking position (abduction-exorotation) – Instability related/overhead sporters ≤ 35 y US MR
  • 177. 3. late cocking phase: abduction/exorotation: posterior RC US MR
  • 178. ♀HW °701220 ed 111006 Internal impingement with SLAP II labral dissociation and SS undersurface tear US MR
  • 179. ♂ ST °880712 ed 110314 Javelin Thrower Internal impingement MR
  • 180. ♀ VV °800919 ed 120118 Internal Impingement, Posterior Cranial Labral Lesion MR
  • 181. Indirect Arthro Herniation Pit US MR
  • 182. Posterosuperior instability • Overhead-throwing sports (dominant shoulder) – Repeated abduction and external rotation – Fibrosis of posterior inferior capsule – Contact posteriorsuperior glenoid margin,labrum and greater tuberosity – Impingement of SS and IS • MRI – Cyst formation greater tuberosity – Tear posterosuperior labrum – Underface tear rotator cuff US MR
  • 183. Paralabral Cyst US MR
  • 184. ♂ ed 060312 Paralabral Cyst Transverse Infraspinatus View Longitudinal Infraspinatus View Infraspinatus Muscle Paralabral Cyst Spina Scapulae US MR Courtesy FYZZIO
  • 185. ♂ ed 111214 Lipomatous Involution IS Volleyball Player Transverse Infraspinatus View Longitudinal Infraspinatus View Teres Minor MuscleSpina Scapulae Trapezius Muscle Trapezius Muscle Humeral head US MR Courtesy FYZZIO
  • 186. Infraspinatus Denervation MR
  • 187. Supraspinatus Denervation Nerve Compression, Idiopathic DD Parsonage Turner TSE T2 WI FS Parsonage Turner: Neuritis Brachial Plexus US MR
  • 188. Conclusion • Conventional radiography – Scapular Y view: acromion, GH-joint – AC-joint • Ultrasound – Rotator Cuff, AC-joint, Subdeltoidal bursa • Direct arthro-MRI – Labral lesions, including SLAP: 67% accuracy – Capsule • Indirect arthro-MRI – Most complete evaluation – Labral lesions: 100% accuracy – Excluding capsule
  • 189. Conclusion Cuff Lesions • Ultrasound – State of the art – Available, economical and accurate – Primary examination • MRI, gadolinium enhanced – Direct or Non-direct – Inconsistency of clinical and ultrasound findings – Preoperatively • Massive tears: feasibility of primary repair • Additional information: muscle and musculotendinous junction
  • 190. References • Takayuki S, Teruhiko N, Masamitsu T, Masafumi I. Prediction of primary reparability of massive tears of the rotator cuff on preoperative magnetic resonance imaging. Journal of Shoulder and Elbow Surgery 2003;12:222-225. • Seeger LL, Gold RH, Bassett LW, Ellman H.Shoulder impingement syndrome: MR findings in 53 shoulders. American Journal Of Roentgenology 1988;150:343-347. • Schroder RJ, Bostanjoglo M, Kaab M, Herzog H, Hidajat N, Rottgen R, Maurer J, Felix R. • Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr. 2003;175:920-928. • Nakatani T, Fujita K, Iwasaki Y, Sakai H, Kurosaka M. MRI-negative rotator cuff tears. Magn Reson Imaging. 2003;21:41-45. • Schulte-Altedorneburg G, Gebhard M, Wohlgemuth WA, Fischer W, Zentner J, Wegener R, Balzer T, Bohndorf K. MR arthrography: pharmacology, efficacy and safety in clinical trials. Skeletal Radiol. 2003;32:1-12. • Motamedi AR, Urrea LH, Hancock RE, Hawkins RJ, Ho C. Accuracy of magnetic resonance imaging in determining the presence and size of recurrent rotator cuff tears. J Shoulder Elbow Surg. 2002 Jan-Feb;11(1):6-10. Related Articles, Links • Chang CY, Wang SF, Chiou HJ, Ma HL, Sun YC, Wu HD. Comparison of shoulder ultrasound and MR imaging in diagnosing full-thickness rotator cuff tears. Clin Imaging. 2002;26:50-54. • Yamakawa S, Hashizume H, Ichikawa N, Itadera E, Inoue H. Comparative studies of MRI and operative findings in rotator cuff tear. Acta Med Okayama. 2001;55:261-268. • Oh CH, Schweitzer ME, Spettell CM. Internal derangements of the shoulder: decision tree and cost-effectiveness analysis of conventional arthrography, conventional MRI, and MR arthrography. Skeletal Radiol. 1999;28:670-678. • Prickett WD, Teefey SA, Galatz LM, Calfee RP, Middleton WD, Yamaguchi K. Accuracy of ultrasound imaging of the rotator cuff in shoulders that are painful postoperatively. J Bone Joint Surg Am. 2003;85-A:1084-1089. US MR
  • 191. References • Magnetic Resonance Imaging in Orthopaedics and Sports medicine; David W. Stoller; 2nd ed. • Internal Derangements of Joints, Emphasis on MR Imaging; Donald Resnick and Heung Sik Kang • MRI, Arthroscopy, and Surgical Anatomy of the Joints; David W. Stoller US MR