Stem cell


Published on

Stem cell therapy in ischemic heart disease

Published in: Health & Medicine
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Stem cell

  1. 1. Stem cell ther apy A new per spective for the tr eatment of ischemic hear t diseases Dr . Md . Arifur Rahman MD (Cardiology)
  2. 2. Cell technologies – Medicine of 21st century  “All diseases begin at cell level” proclaimed the famous German scientist Rudolf Virchov in the 19th. Century.  The 21st. Century is a century of cells ,biomedicine, cell biology and molecular medicine.  Stem cells could be used to replace missing or damaged cells in important diseases.  Today, donated organs and tissues are often used to replace those that are diseased or destroyed. Unfortunately, the number of people needing a transplant far exceeds the number of organs available for transplantation.
  3. 3. HISTORY  Georges Mathé, a French oncologist, performed the first European bone marrow transplant in 1959 on five Yugoslavian nuclear workers whose own marrow had been damaged by irradiation caused by a Criticality accident at the Vinča Nuclear Institute, but all of these transplants were rejected.  Stem cell transplantation was pioneered using bone-marrow-derived stem cells (1950 -1970) by E. Donnall Thomas, whose work was later recognized with a Nobel Prize in Medicine.
  4. 4. HISTORY  In 2001, Menasche, described the successful implantation of autologous skeletal myoblasts into the post-infarction scar of a patient with severe ischemic heart failure.  Following the procedure, the researchers used imaging techniques to observe the heart’s muscular wall and to assess its ability to beat. When they examined patients 5 months after treatment, they concluded that treated hearts pumped blood more efficiently and improved tissue health.
  5. 5. Background  Coronary artery disease is a growing problem worldwide. Early treatment with stabilizing drugs and revascularization by percutaneous coronary intervention or by-pass surgery has reduced the mortality significantly, but it is still the most common cause of death and a major cause of hospital admissions.  Treatment with stem cells with the potential to regenerate the damaged myocardium is a relatively new approach.  However, the results from clinical studies on stem cell therapy for cardiac regeneration have been inconsistent. Some of the discrepancy could be due differences in study designs or patient selection.
  6. 6. Stem cells for clinical treatment  Stem cells are self-replicating and have the capacity to differentiate into at least one highly terminally differentiated specialized cell type .  In cardiology most focus has been on bone marrow derived hematopoietic stem cells, which have the potential to differentiate into endothelial cells and myocardial vasculogenesis.
  7. 7. Stem cells for clinical treatment  Stem cells can be classified into three categories which specifies their differentiation potential: 1. embryonic stem cells (ESC)- derived from inner cell mass of the blastocyte stage of the developing embryo 2. adult stem cells- bone marrow. MNCs and MSCs -peripheral blood , umbilical cord blood and from adipose tissue 3. induced pluripotent stem cells (iPS cells)- transcriptional reprogramming, somatic cells such as fibroblasts.
  8. 8. Bone marrow derived mononuclear cells  This is the most frequent source of cells used in clinical cardiac regeneration, because they are the most easily accessible source of autologous cells for use in reparative transplantation. MNCs can easily be harvested from bone marrow aspirate and can be isolated using markers on the cell surface.  The potential disadvantage of using MNCs, is that the percentage of stem cells that are therapeutically useful may potentially be small.
  9. 9. Mesenchymal stromal cells  MSCs require substantial culture expansion for weeks prior to most experimental applications .  MSCs can differentiate into endothelial progenitor cells by stimulating with vascular endothelial growth factor (VEGF) and into cardiomyocytes by a cocktail of growth factors, chemicals or by microenvironment in vivo.
  10. 10. Induced pluripotent stem cells  These are adult somatic cells reprogrammed into pluripotent stem cells, by introducing pluripotency-associated transcription factors. The iPS cells acquire properties similar to those of ESCs . This technology could potentially eliminate : immune rejection after transplantation and the ethical concerns regarding the use of human embryos. But there are also other problems One of these is teratoma formation identical to what is seen with ESCs.
  11. 11. Mechanisms ofAction The mechanism remains controversial, and it is likely that the cells regenerate myocardium through several pathways.  Transplanted cells differentiated into cardiac cells, blood vessels, or other cells damaged by CVD.  transplanted stem cells release growth factors and other molecules that promote blood vessel formation (angiogenesis) or stimulate “resident” cardiac stem cells to repair damage.  strengthening of the post-infarct scar and the fusion of donor cells with host cardiomyocytes.
  12. 12. Cardiac stem cells- Can the heart regenerate?  The ability of the cardiomyocytes to replicate is controversial . Increases in cardiac mass in mammals during fetal life occur mainly due to cardiomyocyte proliferation. During the perinatal period, mammalian cardiomyocytes are withdraw from the cell cycle, thus limiting their ability to divide and increase in number .  Thus, normal postnatal growth and adaptive increases in cardiac mass in adults as a result of hemodynamic burden are achieved mainly through increase in cell size known as hypertrophy . The human heart contains cycling myocytes undergoing mitosis under normal and pathological conditions .
  13. 13. Methods of Stem Cell Delivery Transvascular Route This approach is particularly for acutely infarcted and reperfused myocardium.  Stem cells can be infused directly into the coronary arteries and have a greater likelihood of remaining in the injured myocardium as a result of the activation of adhesion molecules and chemokines.  The advantage of an intracoronary infusion is that the cells can be directed to a particular territory.  An alternative approach is to inject stem cells intravenously.
  14. 14. Direct Injection Into the Ventricular Wall  Direct injection of stem cells is used in patients in whom a transvascular approach may not be possible because of total occlusion or poor flow within the vessel of the affected territory. There are 3 different approaches to direct injection A transendocardial approach can be used in which a needle catheter is advanced across the aortic valve and positioned against the endocardial surface. Cells can then be injected directly into the left ventricle. Electrophysiological mapping can be used to differentiate sites of viable, ischemic, or scarred myocardium.
  15. 15. Direct Injection Into the Ventricular Wall  In a transepicardial approach, cells are injected during open heart surgery. The advantage of this approach is that it allows direct visualization of the myocardium and easier identification of regions of scar and border zones of infarcted tissues.  A third approach involves the delivery of cells through one of the cardiac veins directly into the myocardium. The limitation of this approach is that positioning the catheter within a particular coronary vein may be considerably more time consuming and technically challenging.
  16. 16. Mobilization and homing of stem cells  Little is known about the signals involved in the mobilization and homing of stem cells to the injured myocardium. It is currently believed that the cytokines CSF, GCSF, and stromal-cell–derived factor-1 (SDF-1) and their receptors play a major role.  Despite their relatively high efficiency, all of the above-mentioned delivery methods are hampered by a major limitation of cell cardiomyoplasty, namely, cell death.
  17. 17. Mobilization and homing of stem cells  As many as 90% of transplanted cells die shortly after implantation as a result of physical stress from the implantation procedure itself, myocardial inflammation, or myocardial hypoxia. This suggest ways to improve the timing of cell cardiomyoplasty.  Therapy too soon after an ischemic episode, when the damaged tissue is still inflamed, may increase the risk of cell death; therapy too late may decrease the chances of reverse myocardial remodeling.
  18. 18. Safety Concerns Arrhythmia –  Increased frequency of nonsustained ventricular tachycardia in patients treated with skeletal myoblasts, peaking 11 to 30 days after stem cell transplantation.  Mechanism - the injected stem cells do not communicate electrically with neighboring cardiac myocytes and/or result in slowed conduction, thereby promoting reentrant arrhythmias.  It has recently been suggested that skeletal myoblasts that have been genetically engineered to express gap junction protein connexin 43 exhibited decreased arrhythmogenicity.
  19. 19. Restenosis, Accelerated Atherosclerosis, and Coronary Obstruction  Stem cell transplantation may promote the formation of de novo lesions or atherosclerotic plaque progression,  CD133+ cells delivered via intracoronary injection in the setting of myocardial infarction, with in-stent restenosis rates of 37% and reocclusion rates of 11%  It is also possible that if the cells are delivered at a high enough concentration via the coronary circulation, they may adhere to each other, form aggregates, and thereby lead to the occlusion of microvessels
  20. 20. Abnormal Cellular Differentiation  Fortunately, no clinical trials to date that have used stem cells to promote cardiac tissue regeneration have demonstrated an increased frequency of tumor formation.  However, most of the clinical trials have been conducted on small numbers of patients. Furthermore, it is not clear how adequate testing would be conducted to monitor for this potential side effect. Because stem cells are known to migrate to several other organs after delivery to the heart, it is conceivable that aberrant cellular differentiation with the potential of tumor formation could occur in any of these organs.
  21. 21. Tracking of Stem Cells  One of the major concerns regarding the delivery of stem cells is determining which cells remain in the heart and which cells ultimately end up in other organs as a result of a washout effect.  Within a few hours after transplantation, stem cells injected locally within the heart also are observed within the lungs, spleen, liver, and kidney. only 24% of the originally injected cells remained in the heart.  Methods to label and track stem cells in animal models, including scintigraphy, PET, and MRI. PET scanning and MRI also have been tested recently in humans to track stem cells.
  22. 22. Evidence for Tissue Regeneration  The ultimate goal of stem cell therapy is to promote cardiac tissue regeneration to improvements in cardiac function that is synchronized with the rest of the functioning heart in the absence of proarrhythmic or other adverse effects.  There is evidence that stem cells may lead to improvements in cardiac function that are independent of tissue regeneration. Although early studies supported the ability of bone marrow–derived mononuclear cells to differentiate into cardiac myocytes, subsequent studies failed to support these initial observations.
  23. 23. Evidence for Tissue Regeneration  It has been suggested that the locally injected cells can act in a paracrine fashion to improve ventricular function through the release of growth factors or other paracrine mediators. These mediators may act to directly augment systolic function, prevent apoptosis of ischemic myocardial cells, or limit injury by promoting angiogenesis.  These paracrine effects are more likely to be useful in patients with acute myocardial ischemia or with hibernating myocardium and less likely to be beneficial in patients with chronically infarcted myocardium with significant scar formation.
  24. 24. Questions need to be addressed ?  First, have we identified which stem cell type to use?  Second, have we determined the mechanisms by which stem cells promote myocardial function or repair? At present, there is limited evidence to support that stem cells used thus far in patients promote significant cardiac tissue regeneration. Third, can the stem cell be retained efficiently within the heart?  Finally, can clinical trials be done in such a way that important safety issues will be adequately addressed? What methods will be used to monitor the development of life-threatening arrhythmias and to track injected stem cells throughout the body?
  25. 25. Conclusions    Stem cells remain a highly promising therapeutic modality that could address the large, unmet clinical need of treating patients throughout the world with significant cardiac dysfunction that cannot be adequately treated with conventional therapeutic approaches or cardiac transplantation because of the limited availability of this resource. On the basis of the mixed results of more recent larger clinical trials, we should err on the side of caution before committing precious resources to conduct additional large clinical trials. It is clear that additional basic research is needed to optimize ways to promote cardiac tissue regeneration, to improve methods by which delivered stem cells will remain in the heart, and to optimize the way in which stem cells are tracked after delivery.