Your SlideShare is downloading. ×
0
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
8.4 logarithms1
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

8.4 logarithms1

858

Published on

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
858
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
22
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. 7.4 Logarithms p. 499 What you should learn: Goal 1 Goal 2 Evaluate logarithms Graph logarithmic functions 7.4 Evaluate Logarithms and Graph Logarithmic Functions A3.2.2
  • 2. Evaluating Log Expressions <ul><li>We know 2 2 = 4 and 2 3 = 8 </li></ul><ul><li>But for what value of y does 2 y = 6? </li></ul><ul><li>Because 2 2 < 6 < 2 3 you would expect the answer to be between 2 & 3. </li></ul><ul><li>To answer this question exactly, mathematicians defined logarithms. </li></ul>
  • 3. Definition of Logarithm to base a <ul><li>Let a & x be positive numbers & a ≠ 1. </li></ul><ul><li>The logarithm of x with base a is denoted by log a x and is defined: </li></ul><ul><li>log a x = y iff a y = x </li></ul><ul><li>This expression is read “log base a of x” </li></ul><ul><li>The function f(x) = log a x is the logarithmic function with base a. </li></ul>
  • 4. <ul><li>The definition tells you that the equations log a x = y and a y = x are equivilant. </li></ul><ul><li>Rewriting forms: </li></ul><ul><li>To evaluate log 3 9 = x ask yourself… </li></ul><ul><li>“ Self… 3 to what power is 9?” </li></ul><ul><li>3 2 = 9 so…… log 3 9 = 2 </li></ul>
  • 5. Log form Exp. form <ul><li>log 2 16 = 4 </li></ul><ul><li>log 10 10 = 1 </li></ul><ul><li>log 3 1 = 0 </li></ul><ul><li>log 10 .1 = -1 </li></ul><ul><li>log 2 6 ≈ 2.585 </li></ul><ul><li>2 4 = 16 </li></ul><ul><li>10 1 = 10 </li></ul><ul><li>3 0 = 1 </li></ul><ul><li>10 -1 = .1 </li></ul><ul><li>2 2.585 = 6 </li></ul>
  • 6. Evaluate without a calculator <ul><li>log 3 81 = </li></ul><ul><li>Log 5 125 = </li></ul><ul><li>Log 4 256 = </li></ul><ul><li>Log 2 (1/32) = </li></ul><ul><li>3 x = 81 </li></ul><ul><li>5 x = 125 </li></ul><ul><li>4 x = 256 </li></ul><ul><li>2 x = (1/32) </li></ul>4 3 4 -5
  • 7. Evaluating logarithms now you try some! <ul><li>Log 4 16 = </li></ul><ul><li>Log 5 1 = </li></ul><ul><li>Log 4 2 = </li></ul><ul><li>Log 3 (-1) = </li></ul><ul><li>(Think of the graph of y=3 x ) </li></ul>2 0 ½ ( because 4 1/2 = 2) undefined
  • 8. You should learn the following general forms!!! <ul><li>Log a 1 = 0 because a 0 = 1 </li></ul><ul><li>Log a a = 1 because a 1 = a </li></ul><ul><li>Log a a x = x because a x = a x </li></ul>
  • 9. Natural logarithms <ul><li>log e x = ln x </li></ul><ul><li>ln means log base e </li></ul>
  • 10. Common logarithms <ul><li>log 10 x = log x </li></ul><ul><li>Understood base 10 if nothing is there. </li></ul>
  • 11. Common logs and natural logs with a calculator log 10 button ln button
  • 12. <ul><li>g(x) = log b x is the inverse of </li></ul><ul><li>f(x) = b x </li></ul><ul><li>f(g(x)) = x and g(f(x)) = x </li></ul><ul><li>Exponential and log functions are inverses and “undo” each other </li></ul>
  • 13. <ul><li>So: g(f(x)) = log b b x = x </li></ul><ul><li>f(g(x)) = b log b x = x </li></ul><ul><li>10 log2 = </li></ul><ul><li>Log 3 9 x = </li></ul><ul><li>10 logx = </li></ul><ul><li>Log 5 125 x = </li></ul>2 Log 3 (3 2 ) x = Log 3 3 2x = 2x x 3x
  • 14. Finding Inverses <ul><li>Find the inverse of: </li></ul><ul><li>y = log 3 x </li></ul><ul><li>By definition of logarithm, the inverse is y=3 x </li></ul><ul><li>OR write it in exponential form and switch the x & y! 3 y = x 3 x = y </li></ul>
  • 15. Finding Inverses cont. <ul><li>Find the inverse of : </li></ul><ul><li>Y = ln (x +1) </li></ul><ul><li>X = ln (y + 1) Switch the x & y </li></ul><ul><li>e x = y + 1 Write in exp form </li></ul><ul><li>e x – 1 = y solve for y </li></ul>
  • 16. Assignment
  • 17. Graphs of logs <ul><li>y = log b (x-h)+k </li></ul><ul><li>Has vertical asymptote x=h </li></ul><ul><li>The domain is x>h, the range is all reals </li></ul><ul><li>If b>1, the graph moves up to the right </li></ul><ul><li>If 0<b<1, the graph moves down to the right </li></ul>
  • 18. Graph y =log 5 (x+2) <ul><li>Plot easy points (-1,0) & (3,1) </li></ul><ul><li>Label the asymptote x=-2 </li></ul><ul><li>Connect the dots using the asymptote. </li></ul>X=-2
  • 19. Assignment

×