Your SlideShare is downloading. ×
0
Dimensioning Of Dc Power Systems
Dimensioning Of Dc Power Systems
Dimensioning Of Dc Power Systems
Dimensioning Of Dc Power Systems
Dimensioning Of Dc Power Systems
Dimensioning Of Dc Power Systems
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Dimensioning Of Dc Power Systems

2,832

Published on

Published in: Business, Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
2,832
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
91
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Dimensioning of DC Power Supply System
    • The sizing of a DC Power Supply System is a complicated issue. The following information is required to secure that
    • The system can operate and provide the required back-up time
    • The input- and output circuit breakers and fuses are sized correctly
    • The rectifier unit can provide the required current output both for the load as well for the batteries.
    • The cables and bus-bars should not cause to high voltage drops and therefor make the load failing.
  • 2. Dimensioning of DC Power Systems
    • THE FOLLOWING INFORMATION NEED TO BE AVAILABLE :
    • LOAD REQUIREMENT
    • BACK-UP TIME / NO. OF BATTERY BANKS REQUIRED
    • LOW VOLTAGE BATTERY DISCONNECT VOLTAGE?
    • CONSTANT CURRENT OR CONSTANT POWER CALCULATION?
    • REDUNDANCY OR NOT?
    • % RECHARGE CURRENT (-OF BATTERY CAPACITY @ C 10 )
    • MAXIMUM VOLTAGE DROP FROM SYSTEM TO LOAD
  • 3. Constant Current Discharge Calculation
    • LOAD REQUIREMENT: 50 000W
    • BACK-UP TIME: 1 HOUR MINIMUM 2 BATTERY BANKS
    • LOW VOLTAGE BATTERY DISCONNECT AT 1.80 VPC (43.2Vdc)
    • N+1 REDUNDANT RECTIFIER SYSTEM
    • RECHARGE CURRENT LIMITED TO 10% OF BATTERY CAPACITY @ C 10
    • FROM THIS WE CALCULATE :
    • CURRENT REQUIREMENT FROM BATTERY: 50000W/48V = 1042A FOR 1 HOUR
    • BATTERY SELECTED (EXAMPLE) : FIAMM 2SLA1000 x 2 BANKS (1208A)
    • TOTAL RECTIFIER CURRENT REQUIREMENT : 1042A (LOAD) + 2000A x 10% (BATT) = 1242A
    • BASED ON SMPS 5000/PRS 5000 (100A RECT) : 13+1 (REDUNDANT) MODULES REQUIRED
    • BASED ON SMPS 4000/AEON (85A RECT) : 15+1 (REDUNDANT) MODULES REQUIRED
  • 4. Constant Power Discharge Calculation
    • LOAD REQUIREMENT: 50 000W
    • BACK-UP TIME: 1 HOUR MINIMUM 2 BATTERY BANKS
    • LOW VOLTAGE BATTERY DISCONNECT AT 1.80 VPC (43.2Vdc)
    • N+1 REDUNDANT RECTIFIER SYSTEM
    • RECHARGE CURRENT LIMITED TO 10% OF BATTERY CAPACITY @ C 10
    • FROM THIS WE CALCULATE :
    • POWER REQUIREMENT FROM BATTERY: 50000W/48 CELLS = 1042W/CELL FOR 1 HOUR
    • BATTERY SELECTED (EXAMPLE) : FIAMM 2SLA1000 x 2 BANKS (54768W)
    • TOTAL RECTIFIER CURRENT REQUIREMENT : 50000W (LOAD) + 54768 x 10% (BATT) = 55476.8W
    • BASED ON SMPS 5000/PRS 5000 (4800W RECT) : 12+1 (REDUNDANT) MODULES REQUIRED
    • BASED ON SMPS 4000/AEON (4000W RECT) : 14+1 (REDUNDANT) MODULES REQUIRED
  • 5. Dimensioning of DC Power Systems AC input requirements Each Rectifier Module has an input current of: I max = (P max /Eff) / V input where: I max : Maximum Input Current P max : Maximum Output Power Eff : Efficiency of the Rectifier Module V input : Input Voltage of the Rectifier Module NOTE! Max input current of Eltek’s SMPS 1000SI 48V is 5.5A/200V ac
  • 6. Heat dissipation
    • The heat dissipation of the module/system can be calculated as follows :
    • Maximum output power of the module/system ; P max
    • Efficiency of the rectifier module ; Eff
    • Power loss ; P heat
    • P heat = P max /Eff - P max
    • NOTE! Normally we leave the heat dissipation from the batteries out of this calculation since it’s contribution is so low compared to the losses from the rectifier system. Be aware that during recharge there will be some heat dissipation from the batteries, but not enough to affect sizing of aircon etc.

×