Analog vlsi

5,728 views
5,554 views

Published on

Published in: Technology, Business
0 Comments
7 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
5,728
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
640
Comments
0
Likes
7
Embeds 0
No embeds

No notes for slide
  • Voltage References
  • Analog vlsi

    1. 1. Analog VLSI Design Nguyen Cao Qui
    2. 2. Introduction to the course <ul><li>Name: “ Analog VLSI Design ” </li></ul><ul><li>Instructor: Nguyen Cao Qui </li></ul><ul><li> email: [email_address] </li></ul><ul><li>Goals: </li></ul><ul><li>The goal of this course is to introduce the principles of operation, design and technology of Analog Integrated Circuits to Electrical Engineering students at Senior level. VLSI technology and analog integrated circuit design is covered with an emphasis on CMOS Technology. CMOS layout design and analog simulation tools (Microwind) are demonstrated and used. Students will do a design project and final exam at the end. </li></ul>
    3. 3. Introduction to the course <ul><li>Number of credits : 3 </li></ul><ul><li>(1: theory ; 2: homework + project +Seminar) </li></ul><ul><li>Textbooks: </li></ul><ul><li>“ CMOS: Circuit Design, Layout, and Simulation” </li></ul><ul><li>R. Jacob Baker </li></ul><ul><li>Other Books: </li></ul><ul><li>&quot;CMOS Analog Circuit Design&quot; </li></ul><ul><li>Phillip E. Allen and Douglas R. Holdberg </li></ul>
    4. 4. Introduction to the course <ul><li>Course Policies: </li></ul><ul><li>* Homework + Project : 40% </li></ul><ul><li>* Final Test :60% </li></ul>C onversion 10 ‘ Scale ABCB 0.0 F 4.0 D 4.5 D+ 5.0 C 6.0 C+ 7.0 B 7.8 B+ 8.5 A
    5. 5. CONTENTS <ul><li>Chapter 1: Introduction to CMOS Design </li></ul><ul><li>Chapter 2: The Well </li></ul><ul><li>Chapter 3: The Metal Layers </li></ul><ul><li>Chapter 4: The Active and Poly Layers </li></ul><ul><li>Chapter 5: CAD Tools (Microwind) </li></ul><ul><li>Chapter 6: Resistors, Capacitors, MOSFETs </li></ul><ul><li>Chapter 7: Models for Analog Design (IC Course) </li></ul><ul><li>Chapter 8: The Inverter (IC Course) </li></ul><ul><li>Chapter 9: VLSI Layout Examples </li></ul><ul><li>Chapter 10: Current Mirrors </li></ul><ul><li>Chapter 11: Amplifiers </li></ul><ul><li>Chapter 12: Differential Amplifiers </li></ul><ul><li>Chapter 13: Operational Amplifiers I </li></ul><ul><li>Chapter 14: Voltage References </li></ul><ul><li>Chapter 15: Data Converter Fundamentals (ADC) </li></ul><ul><li>Chapter 16: Data Converter Fundamentals (DAC) </li></ul>
    6. 6. Chapter 1 Introduction to CMOS Design <ul><li>CMOS (complementary metal oxide semiconductor) </li></ul><ul><li>CMOS is used in most very large scale integrated (VLSI) or ultra-large scale integrated (ULSI) </li></ul><ul><li>&quot;VLSI&quot; : chips containing thousands </li></ul><ul><li>or millions of MOSFETs. </li></ul><ul><li>&quot;ULSI&quot; : containing billions, or more, MOSFETs. </li></ul><ul><li>We focus simply on analog CMOS circuit design </li></ul>
    7. 7. Introduction to CMOS Design <ul><li>1. The CMOS IC Design Process </li></ul>
    8. 9. The CMOS IC Design Process <ul><li>1.1 Fabrication </li></ul><ul><li>CMOS integrated circuits are fabricated silicon wafers. </li></ul><ul><li>Each wafer contains chips or &quot;die&quot; </li></ul><ul><li>The most common wafer size is 300 mm </li></ul>
    9. 13. 2. CMOS Background <ul><li>CMOS circuit design was invented in 1963 by Frank Wanlass </li></ul><ul><li>Circuit could be made with discrete complementary MOS devices, an NMOS and a PMOS </li></ul>NMOS PMOS
    10. 14. 2. CMOS Background <ul><li>* Ex: CMOS Inverter </li></ul>
    11. 15. 2. CMOS Background <ul><li>Advantages of CMOS: </li></ul><ul><li>Low power </li></ul><ul><li>Layout on small area </li></ul><ul><li>Can be fabricated with few defects and low cost. </li></ul>95% of ICs are fabricated in CMOS
    12. 16. 3. Technology Scale Down <ul><li>* The Moore’s Law : Doubling every 18 months </li></ul>
    13. 17. 3. Technology Scale Down
    14. 18. Chapter 2: The Well <ul><li>* Studying the well to: </li></ul><ul><li>Understanding CMOS integrated circuit layout and design. </li></ul><ul><li>Understanding the performance limitations and parasitics. </li></ul><ul><li>Understanding the details of each fabrication (layout) layer. </li></ul>
    15. 19. Chapter 2: The Well <ul><li>* The Substrate (The Unprocessed Wafer) </li></ul><ul><li>CMOS circuits are fabricated on and in a silicon wafer </li></ul><ul><li>N-type wafer: doping with donor atoms, exp: phosphorus </li></ul><ul><li>P-type wafer: doping with acceptor atoms, exp: boron </li></ul><ul><li>P-type wafer: the most common substrate used </li></ul><ul><li>NMOS are fabricated directly in the p-type wafer </li></ul><ul><li>PMOS are fabricated in an &quot;n-well.&quot; </li></ul>
    16. 20. Chapter 2: The Well <ul><li>* A Parasitic Diode </li></ul>
    17. 21. Chapter 2: The Well <ul><li>* Using the N-well as a Resistor </li></ul>
    18. 22. 2.1 Patterning <ul><li>CMOS integrated circuits are formed by patterning different layers on and in the silicon wafer. </li></ul>
    19. 23. 2.1 Patterning
    20. 24. 2.1 Patterning
    21. 25. 2.1.1 Patterning the N-well
    22. 26. 2.2 Laying Out the N-well
    23. 27. 2.2.1 Design Rules for the N-well
    24. 28. 2.3 Resistance Calculation
    25. 29. 2.3 Resistance Calculation
    26. 30. 2.3 Resistance Calculation <ul><li>* Layout of Corners </li></ul>
    27. 31. 2.4. PN Junction Physics - Capacitance
    28. 32. 2.4. PN Junction Physics - Capacitance
    29. 33. 2.5. Design Rules for the Well
    30. 34. Chapter 3: The Metal Layers <ul><li>The metal layers: connect circuit elements (MOSFETs, capacitors, and resistors). </li></ul><ul><li>There are several metal layers when layout </li></ul><ul><li>These levels of metal are named metal1 (M1), metal2 (M2)… </li></ul>
    31. 35. 3.1 The Bonding Pad <ul><li>The interface between the die and the package </li></ul>
    32. 36. 3.1.1 Laying Out the Pad
    33. 37. Capacitance of Metal-to-Substrate
    34. 38. Insulator - Overglass layer
    35. 39. 3.2 Design and Layout Using the Metal Layers <ul><li>3.2.1 Metal1 and Via1 </li></ul>
    36. 40. An Example Layout
    37. 41. 3.2.2 Parasitics Associated with the Metal Layers
    38. 42. Intrinsic Propagation Delay <ul><li>The velocity </li></ul>The delay of the metal line Where
    39. 43. 3.2.3 Design Rules for the Metal Layers
    40. 44. A Layout Trick for the Metal Layers
    41. 45. 3.2.4 Contact Resistance
    42. 46. 3.4 Layout Examples
    43. 47. 3.4 Layout Examples
    44. 48. 3.4 Layout Examples
    45. 49. 3.4 Layout Examples
    46. 50. 3.4 Layout Examples
    47. 51. Chapter 4: The Active and Poly Layers <ul><li>The active, n-select, p-select, and poly: form n-channel and p-channel MOSFETs. </li></ul><ul><li>Metal layers can make an contact to the substrate or well. </li></ul><ul><li>The n-select layers indicate where to implant n-type. </li></ul><ul><li>The p-select layers indicate where to implant p-type. </li></ul>
    48. 52. Chapter 4: The Active and Poly Layers <ul><li>The active defines an opening in the oxide. </li></ul><ul><li>The active and select layers are always used together. </li></ul><ul><li>The poly layer forms the gate of the MOSFETs. </li></ul><ul><li>Poly is a short name for polysilicon. </li></ul>
    49. 53. 4.1 Layout using the Active and Poly Layers <ul><li>The Active Layer </li></ul>
    50. 54. The P- and N-Select Layers
    51. 55. The P- and N-Select Layers
    52. 56. The Poly Layer <ul><li>The poly layer is used for MOSFET formation. </li></ul><ul><li>The gate of the MOSFET is formed with the polysilicon. </li></ul><ul><li>The source and drain of the MOSFET are formed with the n+ implant. </li></ul>
    53. 57. Layout and cross-sectional views of a MOSFET.
    54. 58. Layout and cross-sectional views of a MOSFET.
    55. 59. Layout and cross-sectional views of a MOSFET.
    56. 60. The Poly Wire <ul><li>The poly layer can also be used, as a wire. </li></ul><ul><li>Poly is routed on top of the FOX. </li></ul><ul><li>The main limitation when using the poly layer for interconnection is its sheet resistance. </li></ul><ul><li>The sheet resistance of the metal layers is approximately 0.1 Ohm/square ; The poly layer: 200 Q/square . </li></ul><ul><li>The delay through a poly line can be considerably longer than a metal line. </li></ul>
    57. 61. The Poly Wire
    58. 62. 4.1.1 Process Flow
    59. 63. 4.1.1 Process Flow
    60. 64. 4.2 Connecting Wires to Poly and Active
    61. 65. 4.2 Connecting Wires to Poly and Active
    62. 66. Connecting the P-Substrate to Ground
    63. 67. Layout of an N-Well Resistor
    64. 68. Layout of an NMOS Device
    65. 69. Layout of a PMOS Device
    66. 70. Design Rules
    67. 71. Design Rules

    ×