Your SlideShare is downloading.
×

×

Saving this for later?
Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.

Text the download link to your phone

Standard text messaging rates apply

Like this presentation? Why not share!

- Factor theorem solving cubic equations by Ang Choon Cheng 6736 views
- The remainder theorem powerpoint by Juwileene Soriano 3895 views
- Polynomial identities division by Ang Choon Cheng 3472 views
- Long division, synthetic division, ... by John Rome Aranas 1465 views
- 6.5 remainder and factor theorems by hisema01 679 views
- Shubhanshu math project work , pol... by Shubhanshu Bhargava 19271 views
- Remainder Factor Theorems May 27 2009 by ingroy 383 views
- Cubic Equation by reynosje 576 views
- Factor theorem by Reynaldo Bequio-P... 207 views
- Remainder theorem by Trisheanne Joson 123 views
- Remainder theorem and factorization... by susoigto 2352 views
- reproduction by Muhammad Shafi 80 views

No Downloads

Total Views

10,483

On Slideshare

0

From Embeds

0

Number of Embeds

3

Shares

0

Downloads

0

Comments

0

Likes

1

No embeds

No notes for slide

- 1. Polynomials and Partial Fractions In this lesson, you will learn that the factor theorem is a special case of the remainder theorem and use it to find factors of polynomials. 4.5 Factor Theorem Objectives
- 2. In the previous lesson, we saw that the Remainder Theorem can be used to find the remainder when a polynomial is divided by a linear divisor. We will use the factor theorem to find factors of polynomials. Polynomials and Partial Fractions The Factor Theorem is a special case of the Remainder Theorem when the remainder is zero: We also say that P( x ) is exactly divisible by x – a.
- 3. Since P(2) ≠ 0 Polynomials and Partial Fractions By the factor theorem, x + 1 is a factor of P( x ) Substitute for – 1 in P( x ). By the factor theorem, x – 2 is not a factor of P( x ). Substitute for 2 in P( x ). Example .
- 4. Equate coefficients to find the third factor. Polynomials and Partial Fractions Factorise the quadratic equation. Multiply the second equation by 16 and subtract. P(4) = 0; P( – 1) = 0. Substitute x = 4 and x = – 1. Example
- 5. Polynomials and Partial Fractions In this lesson, you will learn to apply the factor theorem to solving cubic equations of the form px 3 + qx 2 + rx + s = 0, where p , q , r and s are constants. 4.6 Solving Cubic Equations Objectives
- 6. We know how to solve linear equations and quadratic equations. We will use the factor theorem to help solve cubic equations. Polynomials and Partial Fractions Cubic equations can be solved by first applying the Factor Theorem to find one of the factors and then reducing the equation to a quadratic equation.
- 7. Polynomials and Partial Fractions By the factor theorem, x – 1 is a factor of P( x ) a = 3, – 1 × c = – 2 so c = 2 A cubic is a linear factor times a quadratic. choose α = 1 Since P(1) = 0 Equate coefficients of x 9 = – 1 × b + 2 b = – 7 Factorise the quadratic equation Example
- 8. a = 1, – 2 × c = 6 so c = – 3 Polynomials and Partial Fractions By the factor theorem, x – 2 is a factor of P( x ) A cubic is a linear factor times a quadratic – α × c = 6 so α is a factor of 6 choose α = 2 Since P(2) = 0 Equate coefficients of x 1 = – 2 × b – 3 b = – 2 Factorise the quadratic Example

Be the first to comment