Dr. pavlos konstantinidis (forest research institute of thessaloniki) “use of new technologies i

572 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
572
On SlideShare
0
From Embeds
0
Number of Embeds
143
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Dr. pavlos konstantinidis (forest research institute of thessaloniki) “use of new technologies i

  1. 1. Workshop «Forest Fires: Fuel mapping in the Mediterranean countries» LIFE10 ENV/GR/617 ArcFUEL Use of new technologies in forest fire protection plans and fuel mapping in the Forest Research Institute of Thessaloniki” Pavlos Konstantinidis FOREST RESEARCH INSTITUTE OF THESSALONIKI Wednesday, 18 December 2013
  2. 2. FOREST RESEARCH INSTITUTE The mission of the Forest Research Institute is to contribute through research to the understanding, restoration, and sustainable management of terrestrial ecosystems such as forests and rangelands and to maintain and enhance plant and wildlife resources for the benefit of people and the nature.
  3. 3. NATO Science for Stability Program
  4. 4. ΝΑΤΟ SCIENCE FOR STABILITY EFESTUS FOREST RESEARCH INSTITUTE WILDFIRES LABORATORY SITHON ATHOS SEIH-SOU HYMITTOS
  5. 5. EFAISTOS Project - Improvement and validation of behaviour models of forest fires (Environment and climate Programm, DG XII)
  6. 6. EFAISTOS Project - Improvement and validation of behaviour models of forest fires (Environment and climate Programm, DG XII) FUEL STATIC 22. HALEPENSIS LOADS, MTON/HA -----------------1 HR 4.10 10 HR 1.10 100 HR 0.30 LIVE HERB 0.00 LIVE WOODY 7.70 ENVIRONMENTAL DATA -------------------1 HR FM 8. 10 HR FM 9. 100 HR FM 10. LIVE HERB FM 70. LIVE WOODY FM 70. SLOPE, % 30. TREATMENT BY: KDK S/V RATIOS, 1/CM ----------------COMPONENT 1 HR 100. LIVE HERB 0. LIVE WOODY 70. (unit) SIGMA 83. OTHER ---------------------------Control DEPTH, CM 106.64 Shrub S HEAT CONTENT, J/G Removal 20000. R & Thinning EXT MOISTURE, % 30. PACKING RATIO 0.00242 PR/OPR 0.44 FIRE BEHAVIOR RESULTS PRE POS PRE POS ---------------------------------------------FIRE MIDFLAME WIND,TKM/H T VARIABLE 0. 10. 20. ----------------------SHRUBS1 6. 5.0 ROS (M/MIN) 51. 155. FL (METERS) 2. 5. 9. (t/ha) 2.8a 0.6b 1.8d IR (KWATTS/SQMT) 1273. 1273. 1273. 5.7c H/A (KJ/SQMT) 11641. 11641. 11641. FLI (KWATTS/MT) 9926. 30136. SMALL 1240. WOODY2 S S-S & Thinning PRE POST 7.7e 0.2f 1.6 4.2a 6.9a 1.3b 5.1c 1.9d 5.4e 3.5 2.5a 7.8b 2.5c 7.5d 2.5e 6.8f 121.5 105.3 8.8b 100.5c 19.2d 115.6 8.3f (t/ha) LITTER3 (t/ha) DEPTH4 (cm) a e
  7. 7. ATHOS: Spatial analysis of the impact of fire - human - environment vegetation of Athos and Sithonia Peninsula. «Δ» 95 Iv/16
  8. 8. Table III Standard errors (SE), Wald statistics (Wald) and significance levels (Sig.) for coefficients (B) of variables included in the logistic regression equation; significance levels are calculated using the score statistics (Score) for variables not in the equation VARIABLE B SE Wald Score Sig. 0.011 0.918 HUMAN IMPACT Distance to Roads Density of Livestock -0.010 0.005 4.328 0.037 CLIMATE 0.308 Summer Mean Air Temperature 1.037 Summer Mean Relative Humidity 1.054 Annual Precipitation 0.905 0.305 0.341 GEOMORPHOLOGY Elevation Slope -0.494 0.238 4.328 0.037 0.111 0.042 6.875 0.009 Aspect 5.582 Geology 1.193 0.694 0.551 LAND USE Vegetation Cover -- -- 12.444 0.006
  9. 9. "Installing Monitoring System on Advances in the suburban forest of Thessaloniki" s ss nsii pen epe ae hall P.h ll P. ura tura Nat Na N. sis ol e l P.halepen Natura ad er pla nt e d
  10. 10. 12/96 9/96 160 140 120 100 80 60 40 20 0 696 Ν ότος 396 12/96 9/96 696 396 20 0 12/95 40 20 12/95 60 40 995 80 60 995 100 80 695 120 100 695 140 120 395 140 395 1294 12/96 9/96 696 Β ορράς 1294 12/96 9/96 696 396 396 12/95 995 695 395 1294 160 12/95 995 695 395 1294 Quercus coccifera 160 Α νατολή 0 Δύση 160 140 120 100 80 60 40 20 0
  11. 11. 5 6 12/9 12/9 6 9/96 9/96 5 696 12/9 995 695 696 160 140 120 100 80 60 40 20 0 396 Δύση 396 5 Ν ότος 12/9 6 395 1294 12/9 9/96 696 Β ορράς 995 695 160 140 120 100 80 60 40 20 0 395 6 5 396 12/9 995 695 395 1294 160 140 120 100 80 60 40 20 0 1294 12/9 9/96 696 396 12/9 995 695 395 1294 Pistacia lentiscus Α να τολή 160 140 120 100 80 60 40 20 0
  12. 12. Pinus nigra Eucalyptus sp. Cedrus atlantica Cedrus libani Quercus pubescens Q.coccifera 4 Q.ilex Ar. unedoQ.pedunculata C.deodara Prunus dulcis P.halepensis Thuja plicata Q.aegilops C.arizonica Ab.cephalonica C.sempervirens Ligustrum vulgare P.brutia Thuja plicata P.ponderosa Pinus sp. P.nigra Eucalyptus sp. Cupressus sp. Πρανές: Δασική νησίδα C.deodara C.deodara
  13. 13. Description of the SITHON system
  14. 14. The wireless connections were implemented using only Protocol Wi-Fi - 801.11a in the frequency range 5,1 - 5,8 GHz. Εφαρμογή Επίγειων Μ εθόδων Τηλεανίχνευσης Στόχοι: • Εικοσιτετράωρη παρακολούθηση ολόκληρης της έκτασης της δασικής αυτής περιοχής . • Διακριτική εποπτεία του συνόλου της δασικής έκτασης εξασφαλίζοντας αδιάλειπτη και απρόσκοπτη παρακολούθηση. • Αμεσότατο εντοπισμό, πιθανής εστίας φωτιάς, για άμεση ενημέρωση της δύναμης πυρόσβεσης. • Ακριβής προσδιορισμός της πιθανής εστίας φωτιάς, με μείωση του χρόνου πρώτης προσβολής. Ημερομηνία έναρξης 1-7-2003 ολοκλήρωσης Περιγραφή παραδοτέων Δίκτυο επίγειας τηλεανίχνευσης στη Σιθωνία, η οποία θα 1. παραμείνει και μετά το τέλος του προγράμματος σε επιχειρησιακή δράση από τους τοπικούς φορείς πυροπροστασίας. 2. Διαδικασία εκπαίδευσης σε θέματα ασύρματων δικτύων και χρήσης νέων τεχνολογιών από το προσωπικό που είναι επιφορτισμένο με την ανίχνευση των δασικών πυρκαγιών. 3. Γνώση της αξιοπιστίας, της οικονομικότητας και της αποτελεσματικότητας της επίγειας τηλεανίχνευσης με τη χρήση οπτικών εικονοληπτών. Ημερομηνία 31-12-2006 ΕΘΙΑΓΕ/ΙΔΕΘ, Τ-ΝΕΤ, ΟΛΥΜΠΙΟΣ, Ο-TECH, ΤΟ ΕΘΙΑΓΕ/ΙΔΕΘ, Τ-ΝΕΤ, Παραδόθηκε ΕΘΙΑΓΕ/ΙΔΕΘ, ΠΑ, ΑΠΘ Παραδόθηκε εν μέρει Παραδόθηκε
  15. 15. Self-supporting monitoring (camera) tower Type Franklin, with a full equipment load transmission lightning and earthing grid. Rotation: 350 degrees horizontally and 100 degrees on the vertical axis. Position accuracy: 5 / 100 degree. Memorisation accuracy: 1/1,000 degree. Movement: automatic and manual. Air temperature, wind speed, wind direction, relative humidity and barometric pressure. TCP/IP data transfer protocol. RJ45 port. Point to Point / Backbone Bridge External O.D.U. Wireless Bridge: Bi-directional amplifier transceivers (both transmission and reception) with low power emission (limit of 100 miliwatt). One-crystal silicon solar panels, dry type batteries, automation load control and energy efficiency with remote management, converter / inverter DC 24 V - AC 220 V. Autonomy of 72 h. Metal construction, standard size 19 in. in size at least 16 U, with a glass door, thermostat and fans.
  16. 16. The solutions provided by SITHON. Use of modern technology in order to create a complete system that: reduce the time of localization evaluate the exact fire localization, improve the time of first intervention, taking prompt and accurate decisions by the coordinator. We improved the detection time and combined it with: the reduction of the time of first intervention to increase its efficacity. The reduction of the intervention time : to obtain reliable information directly from the Coordinating Center of firefighting, which moved in real time to fighting ground and air forces. Such information contribute to: 1.determining the fastest way to be adopted by the fighting ground units 2.Determining priority actions that protect sensitive areas (fuel reservoirs, camps, archeological sites, etc.) 3.determining the fuel type (phrygana, shrublands or forests, fuel quantity, degree of canopy cover, density) 4.Identification of dangerous locations for the fighting forces, identification of the nearest artificial and natural water reservoirs, etc.
  17. 17. Application Areas of SITHON
  18. 18. fuel mapping
  19. 19. Each forest is a factory producing combustible biomass. Which will eventually burned by n anthropogenic causes
  20. 20. inventory method extensive sampling
  21. 21. Fuel types
  22. 22. Επιστημονικός Υπεύθυνος εργασίας : Γεώργιος Τσιουρλής Δρ. Είδος έρευνας Τίτλος ενότητας εργασίας Βασική έρευνα Φορείς εκτέλεσης Ενότητα εργασίας Aρ.: 2 ΕΘΙΑΓΕ/ΙΔΕΘ / Εργαστήριο Οικολογίας, ΤΟ Χαρτογράφηση της καύσιμης ύλης και αξιολόγηση του κινδύνου πυρκαγιάς. Στόχοι Μελέτη της ποιοτικής και ποσοτικής κατανομής της βλάστησης, της καύσιμης ύλης και της αξιολόγησης του κινδύνου πυρκαγιάς με τις επί μέρους δράσεις: Χαρτογράφηση και αξιολόγηση των δασών και δασικών εκτάσεων σχετικά με τον κίνδυνο πυρκαγιάς Εκτίμηση και χαρτογράφηση της καύσιμης ύλης Αξιολόγηση τουΟΙΚΟΤΟΠΟΣ / των Species: κινδύνου πυρκαγιάςCODE οικοσυστημάτων της περιοχής έρευνας Fuel ΧΡΗΣΗ ΓΗΣ Pinus halepensis 1 types Pinus nigra 2 Ημερομηνία έναρξης 1/7/2003 Ημερομηνία ολοκλήρωσης 30/6/2005 Αείφυλλα σκληρόφυλλα 3 Class % Φρύγανα 4 Εδαφοκάλυψης Ποολίβαδα 5 Περιγραφή παραδοτέων 1 0 – 10 % 6 Φυλλοβόλα 1 Χάρτες φυτοκοινωνιών (τύπος οικοτόπων, φυτοκάλυψη, ηλικία και άλλα 2 Καλλιέργειες δένδρων 11 – 25 %7 δομικά στοιχεία) και αναφορά αξιολόγησης των φυτοκοινωνιών σχετικά με τον ΕΘΙΑΓΕ/ΙΔΕΘ, ΤΟ Παραδόθηκε . Αμπέλια 3 26 – 40 %8 κίνδυνο πυρκαγιάς Αροτριαίες καλλιέργειες 41 – 55 %9 4 Αστικές περιοχές 10 2 Χάρτης καύσιμης ύλης και αναφορά αποτελεσμάτων και συμπερασμάτων 5 56 - 70 % ΕΘΙΑΓΕ/ΙΔΕΘ, ΤΟ Παραδόθηκε Αντιπυρικές 11 . της έρευνας της βιομάζας και νεκρομάζας 6 71 – 100 % Άγονα 12 3 Χάρτης και αναφορά αξιολόγησης του κινδύνου πυρκαγιάς της περιοχής Παραδόθηκε Παραρεμάτια 13 ΕΘΙΑΓΕ/ΙΔΕΘ, ΤΟ έρευνας. . Λοιπές εγκαταστάσεις 14 P. nigra – P. halepensis 21
  23. 23. LiDAR (Light Detection and Ranging)
  24. 24. A "type fuel" is defined as a typical combination of characteristic elements of fuel as the type, size, shape, quantity and continuity, having certain behavior of fire under specific conditions of ignition (Anderson 1982, Merrill and Alexander 1987). A "fuel model" is called a mathematical representation of fuel with all the variables that characterize the fuel material and are essential for the estimation of the main characteristics of fire behavior such as spread rate and thermal intensity of the front (Deeming 1975). Thirteen standards fuel models (NFFL - National Forest Fire Laboratory, BEHAVE, Albini 1976, Burgan and Rothermel 1984) have been developed for the estimation of the fire behavior in local conditions. Each model is a small database that determines the potential fire behavior (Anderson 1982). More recently, in an attempt to address some of the limitations posed by the thirteen standards fuel models 40 other standards models were created (Scott and Burgan 2005). The new models were developed in order to increase the prediction accuracy of the intensity of surface fire, risk assessment and crown fire behavior.
  25. 25. Species: ΟΙΚΟΤΟΠΟΣ / ΧΡΗΣΗ ΓΗΣ CODE Pinus halepensis forests 1 Pinus nigra forests 2 Evergreen sclerophylous shrubs 3 Gariggues -Phrygana 4 Grassland 5 Deciduous forests Crops trees 6 Vines Arable crops Urban areas Burnt areas Barren lands Riparian forests Other facilities 7 8 Class % Land cover 9 1 0 – 10 % 2 11 – 25 % 3 26 – 40 % 4 41 – 55 % 13 5 56 - 70 % 14 71 – Mixed forests (P. nigra6– P. halepensis) 100 % 10 11 12 21
  26. 26. Sensor Web Fire Shield
  27. 27. Symbol Vegetation type / Land use Coverage PH 1 Pine forests 10 - 40% PH 2 Pine forests 41-70% PH 3 Pine forests 71-100% SHR 1 Mediterranean shrublands 10 - 40% SHR 2 Mediterranean shrublands 41-70% SHR 3 Mediterranean shrublands 71-100% GAR 1 Phrygana and garrigue 10 - 40% GAR 2 Phrygana and garrigue 41-70% GAR 3 Phrygana and garrigue 71-100% REF Reforestations BURNT Burnt areas OLEO Olive groves CUL Cultivations Infr Infrastructures BAR Bare soil
  28. 28. Parameter Degree Degree of ignition of species Pine forests 3 Mediterranean shrublands 2 Phrygana – garrigues 1 Slope < 15% 1 16-30% 2 > 31% 3 Aspect S 3 SW, SE 2 E, W 1 N, NE, NW - Elevation 0 – 600 m 3 > 600 m 1 Risk zones of human activity from the urban environment, mountain plants, leisure 500 m from highways 100 m from roads in the forest 50 m
  29. 29. Natural and anthropogenic factors
  30. 30. Orientation
  31. 31. Inclination
  32. 32. Geology
  33. 33. annual rainfall
  34. 34. Burnt area and vegetation
  35. 35. Maximum temperature of the summer months
  36. 36. Mean temperature of the summer months
  37. 37. Rainfall of summer period
  38. 38. Mean annual humidity
  39. 39. Mean annual humidity of summer
  40. 40. Vegetation and grazing
  41. 41. 3D map of the area and historic of fires
  42. 42. • Dead leaves • Logging residues • Grasses • Shrubs – phryganic species • Dead trees in forest
  43. 43. Aerial fuel: It includes all the alive or dry material located on the crowns of trees, in the upper understory of forests, such as branches and leaves or needles of trees, dead standing trees, high shrubs and other forms of biomass found in the canopy. Surface fuel: It includes alive or dead material on the surface of the ground or near it (up to two meters), as humus, litter, grasses – herbaceous vegetation, shrubs, young trees, dead trunks in decomposition, twigs and branches on the ground and stumps Subsurface fuel: It includes all the material below the surface of soil, as deep humus, roots and decomposed trunks and branches.
  44. 44. Light fuel
  45. 45. Heavy fuel
  46. 46. The time lag (TL) is an expression of the rate at which a given fuel reaches the equilibrium moisture content. The lag interval is defined as the time required that the dead fuel to lose about 63% of the difference between the initial moisture content and the moisture content at equilibrium at constant humidity and air temperature. The duration of these periods is the main characteristic of fuel. The time lag is usually expressed in hours (hr). The average time of the time lag varies depending on the size and other characteristics of the fuel. The National Fire-Danger Rating System of the USA has categorized the reaction of moisture content in classes of time lag of: 1 -, 10 -, 100 - and 1000-hr. For the facility of the scientific community the time lag (TL) has been corresponding with the diameter of the fuel as follows: • • • • 1-hr 10-hr 100-hr 1000-hr = 0,00 – 0,63 cm = 0,64 – 2,50 cm = 2,51 – 7,62 cm = 7,62 – 22,8 cm
  47. 47. Fuel compaction The compactness of the substrate of fuel is determined by the packing ratio. The packing ratio is defined as the percentage of volume of the fuel consisting of fuel, while the remaining percentage is the air that is in the gaps between the parts of fuel. . Horizontal and vertical distribution - continuity The structure of the various types of vegetation influences the amount of heat energy that is available for combustion. Both vertical and horizontal distribution of fuel strongly influences fire behavior. Grassland vegetation and shrubs have vertically while material on ground such as dead trunks or branches, horizontally distribution. Size and shape The ratio surface-area-to volume of fuel (SA/V) also plays an important role in the flammability of fuel. Fuels with a high ratio SA/V, as litter of pine needles, foliage and alive twigs of shrubs, ignite more easily than those who have little fuel ratio
  48. 48. Estimation and mapping of fuel in a study area : Fuel categories Fuel category Twigs 0-0,5 cm (needles / leaves - live and dead twigs) Dead branches (0-7,5 cm) / dead shrubs Litter Dead branches on soil Fuel 1-Η timelag Twigs 0,6-2,5 cm - Fuel 10-Η timelag Branches 2,6-7,5 cm - Fuel 100-Η timelag) Total fuel
  49. 49. Ecosystem - Species Location. Reference - Project Pine forests Sithonia and Athos Peninsula. Project SITHON. Project ATHOS Aleppo pine (Pinus halepensis) Srawberry tree (Arbutus unedo) Heather (Erica manipuliflora) Garrigues Kermes oak (Quercus coccifera) Mediterranean shrublands Wild olive (Olea europaea var. sylvestris) Phoenician juniper (Juniperus phoenicea) Lagadas County. Projects GeoRange and DeSurvey. Naxos, Crete. Tsiourlis 1990, 1992. Projects “Maquis and phrygana”, DeMon, “Desertification in Crete” and Modem. Kermes oak (Quercus coccifera) Mastic tree (Pistacia lentiscus) Phrygana Thorny burnet (Sarcopoterium spinosum) Thyme (Thymus capitatus) Broom (Genista acanthoclada) Rock roses (Cistus spp.) Heather (Erica manipuliflora) Greek spiny acanthothamnos) spurge (Euphorbia Kermes oak (Quercus coccifera) Mastic tree (Pistacia lentiscus) Wlid olive (Olea europaea var. sylvestris) Jerusalem sages (Phlomis spp.) Spiny broom (Calycotome villosa) Naxos, Crete. Tsiourlis 1985, 1986, 1990, 1998; Roeder et al., 2001; Τσιουρλής και Κασαπίδης, 1998; Tsiourlis and Kasapidis, 1999. Projects “Maquis and phrygana”, “Desertification in Crete”, DeMon and Modem.
  50. 50. Equations presenting the estimation of fuel load of the ecosystems of Hymettus Mt. PINE FORESTS Fuel 1-Η timelag y = 0,1247 x1,444 R2 = 0,5236 Fuel 10-Η timelag y = 0,0257 x1,5371 R2 = 0,4355 Fuel 100-Η timelag y = 0,0002 x2,4956 R2 = 0,463 Total fuel y = 0,1108 x1,5636 R2 = 0,5214 Fuel 1-Η timelag y = 7,2929 e0,0218x R2 = 0,7323 Fuel10-Η timelag y = 2,1382 e0,0221x R2 = 0,771 Fuel 100-Η timelag y = 0,1525 x + 1,3177 R2 = 0,1796 Total fuel y = 12,407 e0,0208x R2 = 0,6176 Fuel 1-Η timelag y = 0,0143 x1,642 R2 = 0,9322 Fuel 10-Η timelag y = 0,0073 x1,6324 R2 = 0,9333 Total fuel y = 0,0216 x1,6388 R2 = 0,9326 MEDITERRANEAN SHRUBLANDS PHRYGANA – GARRIGUES X = coverage (%) Y = fuel (t/ha)
  51. 51. Figure: The estimation of fuel loads (1 H timelag) Figure: The estimation of fuel loads (100 H timelag) Figure 11: The estimation of fuel loads (10 H timelag Figure: The estimation of fuel loads (1000 H timelag)
  52. 52. Fuel load per category of time lag of the coverage categories (and mean point of each class) used in vegetation mapping FUEL LOADS OF IMITTOS Mt. PINE FORESTS Category / Coverage (t/ha) Fuel 1-Η timelag Fuel 10-Η timelag Fuel 100-Η timelag) Total fuel MEDITERRANEAN SHRUBLANDS Category / Coverage (t/ha) Fuel 1-Η timelag Fuel 10-Η timelag Fuel 100-Η timelag Total fuel PHRYGANA – GARRIGUES Category / Coverage (t/ha) Fuel 1-Η timelag 11-40% Μean 25% 41-70% Μean 55% 71-100% Μean 85% 13,0 3,6 0,6 17,3 40,6 12,2 4,4 57,2 76,2 23,7 13,1 113,0 11-40% Μean 25% 41-70% Μean 55% 71-100% Μean 85% 12,6 3,7 5,1 21,4 24,2 7,2 9,7 41,1 46,5 14,0 14,3 74,8 11-40% Μean 25% 41-70% Μean 55% 71-100% Μean 85% 2,8 10,3 21,1
  53. 53. Fuel risk scale (1-10) according to the soil cover (t/ha) of ecosystems of Imittos Mt. Fuel risk scale (1 to 10) / 11-40% coverage (t/ha) Μean 25% 1 to 3 PINE FORESTS MEDITERRANEAN SHRUBLANDS PHRYGANA – GARRIGUES 41-70% Μean 55% 4 to 7 71-100% Μean 85% 2 6 9 1 to 3 3 to 5 6 to 8 2 0-1 4 1-2 7 2 to 4 1 2 3 8 to 10
  54. 54. the classification of vegetation / land use of the mapping and their correspondence with the main fuel models used in the project. Correspondence of vegetation types / land use of mapping with the basic fuel models of BEHAVE Symbol PH SHR GAR REF BURNT OLEO CUL Infr BAR Vegetation type / Land use Pine forests Mediterranean shrublands Phrygana - garrigues Reforestations Burnt Olives groves Cultivations Infrastructures Bare soil Fuel Model 10 4 6 6 6 8 1 -

×