03.forest fires 2012_gmv_170523_v2
Upcoming SlideShare
Loading in...5
×
 

03.forest fires 2012_gmv_170523_v2

on

  • 222 views

 

Statistics

Views

Total Views
222
Views on SlideShare
191
Embed Views
31

Actions

Likes
0
Downloads
4
Comments
0

2 Embeds 31

http://www.arcfuel.eu 29
http://arcfuel.eu 2

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    03.forest fires 2012_gmv_170523_v2 03.forest fires 2012_gmv_170523_v2 Presentation Transcript

    • ArcFUEL Density Map based on the FCD Model. Case study: Sierra de las Nieves (Spain) Forest Fires 2012 ConferenceSession ArcFUEL: Advancing Forest Fuel Mapping techniques in Europe Arturo Vinué, Marta Gómez GMV | Isaac Newton 11 | 28760 Tres Cantos (Madrid), ES T: +34-918-072-100 | avinue@gmv.com mggimenez@gmv.com 3rd International Conference on Modelling, Monitoring and Management of Forest Fires 1 22 – 24 May, 2012, New Forest, UK Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Index FCD Model Input Data Data Harmonization Noise Reduction Process Indices Computation. Synthesis Model Integration Model Discussion References 2 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • FCD Model Developed during ITTO Project PD 32/93 Rev. 2 (F), “Rehabilitation of Logged-over Forests in Asia-Pacific Region, Sub-project III” (JOFCA 1991, 1993) Forest status assessed on the basis of canopy density FCD analysis utilizing data derived from four indices: Advanced Vegetation Index (AVI) Bare Soil Index (BI) Shadow Index or Scaled Shadow Index (SI, SSI) Thermal Index (TI) (A. Rikimaru et al., 2002) 3 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • FCD Model (A. Rikimaru et al., 2002) 4 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Input Data Landsat TM (Thematic Mapper) Data: LT52010352011257MPS00 PRODUCT_TYPE "L1T" SPACECRAFT_ID "Landsat5" SENSOR_ID "TM" ACQUISITION_DATE 2011-09-14 WRS_PATH 201 STARTING_ROW 35 ENDING_ROW 35 5 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • LT52010352011257MPS00 6Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Input Data MUCVA10 (Andalusian Vegetation Cover and Use Map, 2010) Hierarchical coding of land uses from 4 main types: Infrastructures and built surfaces Wetlands and water surfaces Agricultural lands Natural and forest areas 112 cartographical classes 7 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Data Harmonization LANDSAT5 TM imagery converted from WGS84 UTM30 to ETRS89 LAEA MUCVA10 converted from ED50 UTM30 (official reference system in Spain until 2007). Conversion parameters as follows (IGN, 2005): ΔX (m) = -131.032 ΔY (m) = -100.251 ΔZ (m) = -163.354 μ (ppm) = 9.39 Ωx (arc seconds) = 1.2438 Ωy (arc seconds) = 0.0195 Ωx (arc seconds) = 1.1436 8 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • 9Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Noise Reduction Process Noise defined as an image component which interferes with the proper visual interpretation, such as, clouds, shadows, water bodies, etc. Three different masks carried out to accomplish further analysis out of the area of interest Water Bodies Clouds Cloud Shadows Water bodies masked out using an ENVI spectral module (LOC – Water) Clouds and Shadows masked out using training areas (parallelepiped and maximum likelihood supervised classifications) 10 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Input Landsat5 TM image Building masks Landsat masked image Pilot Area location Sierra de las Nieves Natural Park MUCVA10 11Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Range Normalization Linear stretching is applied from [min, max] to [0, 255] 12 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Advanced Vegetation Index The Advanced Vegetation Index is calculated with the following formula (Rikimaru et al. 2002):B43 = B4 – B3Case-a: B43 < 0 AVI= 0Case-b: B43 > 0AVI = ((B4 +1) x (256-B3) x B43)1/3 Avanced Vegetation Index 13 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Bare Soil Index The Bare Soil Index is calculated with the following formula (Rikimaru et al. 2002):BI= [(B5+B3)-(B4+B1)] / [(B5+B3) + (B4+B1)] x 100 +100[0 < BI <200] Bare Soil Index 14 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Synthesis Model. Vegetation density % 15 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Synthesis Model. Vegetation density %Variability components explained byevery component are:611.1514 / (611.1514 + 88.6811) =0.8733 ~ 87.3%88.6811 / (611.1514 + 88.6811) =0.1267 ~ 12.7% PCA1 16 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Synthesis Model. Vegetation Density % Vegetation Density is extracted after rescaling PCA1 as indicated in the figure below. Method used is a linear conversion Vegetation Density (%) 17 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Shadow Index (Scaled Shadow Index) The Shadow Index is calculated with the following formula (Rikimaru et al. 2002):SI= ((256-B1) x (256-B2) x (256-B3)) SSI is obtained by linear transformation of SI Scaled Shadow Index 18 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Integration Model (FCD Map) Integration of VD and SSI means transformation for forest canopy density valueFCD = (VD x SSI + 1)1/2 – 1 (Rikimaru et al. 2002) Forest Canopy Density 19 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • 20Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Dense Forestry Areas FCD Map Google Earth 21 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Dense Shrublands with trees FCD Map Google Earth 22 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Sparse Shrublands with trees FCD Map Google Earth 23 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Grassland with trees FCD Map Google Earth 24 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Dense shrubland without trees FCD Map Google Earth 25 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Sparse Shrubland without trees FCD Map Google Earth 26 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Grasslands FCD Map Google Earth 27 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Open areas bare or barelyvegetated FCD Map Google Earth 28 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Discussion Qualitative assessment producing good results Quantitative assessment to be done. JRC Tree Cover map use to be investigated Non-fuel masks (urban areas) to be applied to avoid miss-detections Correlations between TI and SSI to be analyzed in order to include temperature information in the process (Black Soil Detection step) More detailed vegetation information to be used for validation 29 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • Discussion Shrublands vs Forest based on SSI to be investigated Digital Elevation Models to be included in the process to mask shadows DEM to produce altitudinal profiles in order to characterize shrublands vs forestry 30 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com
    • References Center for Earth Observation , University of Yale, 2012. Converting Landsat TM and ETM+ thermal bands to temperature. Available on: (http://www.yale.edu/ceo/Documentation/Lands at_DN_to_Kelvin.pdf) / Rikimaru, A., Roy, P.S., Miyatake, S.,2002. Tropical forest cover density mapping. Tropical Ecology 43(1): 39-47 Rikimaru, A. and Tateishi, R., 2003. Development of Forest Cover Density Mapping Methodology. Proceedings CEReS International Symposium Remote Sensing, 41-49 31 Arturo Vinué, Marta Gómez; GMV; T:+34 918 072 100; avinue@gmv.com mggimenez@gmv.com