Me330 lecture8

822 views
627 views

Published on

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
822
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
13
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Me330 lecture8

  1. 1. ME 330 Control Systems SP 2011 Lecture 8
  2. 2. Nonlinear Systems <ul><li>Every real system is truly nonlinear </li></ul><ul><li>Linear models often approximate nonlinear systems within acceptable operating range </li></ul>spring damper
  3. 3. Linearization of Nonlinear Systems <ul><li>Pendulum model </li></ul> l m <ul><li>Nonlinear differential equation </li></ul><ul><li>Free-body diagram </li></ul>l mg T inertia for simple pendulum <ul><li>Linear differential equation approximation (for small angles  ) </li></ul>
  4. 4. Linear Model Response <ul><li>Pendulum response </li></ul>from the model Laplace domain representation <ul><li>Assume and </li></ul><ul><li>Inverse Laplace transform </li></ul>
  5. 5. Inverted Pendulum <ul><li>One of the most studied control problems (in the nonlinear form) </li></ul>Define the center of gravity coordinates <ul><li>Open-loop unstable (will fall unless suitable force is applied) </li></ul><ul><li>Force f(t) applied to cart </li></ul><ul><li>Assume center of gravity is at the geometric center </li></ul> l mg x f M
  6. 6. Inverted Pendulum <ul><li>Nonlinear equations of motion </li></ul> l mg V H horizontal vertical rotational horizontal f V H M
  7. 7. Linearization of Inverted Pendulum <ul><li>Assume  to be small </li></ul>horizontal vertical
  8. 8. Transfer Function Inverted Pendulum <ul><li>Solve for X(s) </li></ul><ul><li>Plug into </li></ul>
  9. 9. Next Lectures <ul><li>Direct transfer function manipulation. </li></ul>

×