Anpad rl rq_2005_a_2007_resolvidos

9,435 views
9,294 views

Published on

1 Comment
3 Likes
Statistics
Notes
No Downloads
Views
Total views
9,435
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
482
Comments
1
Likes
3
Embeds 0
No embeds

No notes for slide

Anpad rl rq_2005_a_2007_resolvidos

  1. 1. Prof. Milton Araújo cursoanpad@gmail.com1 1) Considere as seguintes sentenças: I. Os gatos são pretos e os cachorros são brancos. II. Se todos os gatos são brancos, não há gatos na varanda. III. Não é verdade que os cachorros são pretos e que há gatos na varanda. Admitindo-se que todas essas sentenças sejam verdadeiras, é CORRETO afirmar que: a) Os gatos são pretos ou os cachorros são brancos. b) Não há gatos na varanda. c) Todos os gatos estão na varanda. d) Os cachorros são pretos. e) Os gatos são brancos. Solução: As três sentenças formam as premissas de um argumento lógico, para o qual se quer sua conclusão. Usando o método visto em aula, coloca-se o argumento em linguagem simbólica e retira-se, rapidamente, sua conclusão. Sejam as proposições: Pg : Os gatos são pretos; Bg : Os gatos são brancos; Pc : Os cachorros são pretos; Bc : Os cachorros são brancos; v : Há gatos na varanda. O argumento, em linguagem simbólica, fica assim: Condição de Validade I BcPg ∧ V II vBg ~→ V III ( )vPc ∧~ V C ? V A premissa I deve ser verdadeira (para conclusão verdadeira e validade do argumento). Observe que a premissa é formada por uma proposição lógica conjuntiva. Assim, os valores lógicos de Pg e Bc devem ser V. Na premissa II tem-se a proposição antecedente falsa, logo, ainda não se pode determinar o valor lógico de sua conseqüente (ou seja, os gatos podem ou não estar na varanda). Na premissa III (após se aplicar Lei de De Morgan), tem-se que é falsa, então v~ é verdadeira. A premissa III, após a aplicação da Lei de De Morgan, é disjuntiva. Então, a única conclusão possível para o argumento é a apresentada na alternativa a. Resposta: letra a. 2) Sejam as seguintes proposições: I. ( )( ) ( )RPQPP →∨→↔ II. ( ) ( )( )QRPQP ∧∨↔→~ III. ( )( ) ( )( )RQPRQP →→→→∧ Admitindo-se que os valores lógicos das proposições P, Q e R são respectivamente, F, F e V (V, se verdadeiro; F, se falso), os valores lógicos das proposições compostas I, II e III são, respectivamente: a) F, F, F b) F, F, V c) F, V, F d) V, V, V e) V, F, V Solução: Facilmente solucionável para quem conhece a valoração de proposições lógicas compostas. I. Se as proposições P e Q são falsas e R verdadeira, então RP → é verdadeira e a proposição lógica disjuntiva deste item é verdadeira sem que seja preciso analisar o valor lógico de ( )( )QPP →↔ , que é falso (verifique!). Apenas com a certeza do valor lógico da proposição do item I, já eliminamos as alternativas a, b e c. Para se chegar à resposta correta, basta agora analisar a proposição do item II:
  2. 2. Prof. Milton Araújo cursoanpad@gmail.com2 ( ) ( )( )QRPQP ∧∨↔→~ . Com os valores lógicos dados para as proposições P e Q (ambas falsas) e R (verdadeira), verifica-se que ( )QP ~→ é verdadeira e que ( )( )QRP ∧∨ é falsa, levando a bicondicional ao valor lógico falso. Resposta: letra e. 3) Uma ilha muito distante era habitada por dois povos rivais que estavam em guerra: o povo condicional e o povo incondicional. Ambos tinham as mesmas palavras em seu vocabulário, mas estruturas oracionais distintas. O povo condicional conhecia proposições, a negação de proposições, proposições condicionais e proposições bicondicionais, mas desconhecia a conjunção e a disjunção entre proposições. O povo incondicional conhecia proposições, a negação de proposições, a disjunção e a conjunção entre proposições. Qual das seguintes alternativas ilustra, entre parênteses, a tradução CORRETA da língua condicional para a língua incondicional? a) Se o povo condicional ganhar a batalha, não deixará o povo incondicional habitar a ilha. (O povo condicional ganha a batalha e o povo incondicional não habitará a ilha) b) Se o povo condicional não ganhar a batalha, o povo incondicional monopolizará a ilha. (O povo condicional não ganha a batalha ou o povo incondicional monopolizará a ilha.) c) Se o povo condicional perder a batalha, o povo incondicional ganhará a batalha. (O povo condicional perde a batalha ou o povo incondicional perderá a batalha). d) Não é o caso que, se o povo condicional não ganhar a batalha, ele deixará a ilha. (O povo condicional não ganha a batalha e não deixará a ilha.) e) O povo incondicional ganhará a batalha se, e somente se, ele monopolizar a ilha. (O povo incondicional ganha a batalha e monopoliza a ilha.) Solução: Observe o candidato que a questão é puramente conceitual! Basta “traduzir” as proposições da linguagem condicional (ou bicondicional) para proposições conjuntivas ou disjuntivas, usando as seguintes equivalências: (1) Para a condicional, tem-se as seguintes equivalências: ( )qpqp ~~ ∧⇔→ ou qpqp ∨⇔→ ~ ou ainda ( ) ( )qpqp ~~ ∧⇔→ (equivalência da negativa da condicional) (2) Para a bicondicional: ( ) ( )[ ]qpqpqp ~~ ∨∧∨⇔↔ Pelas considerações acima, somente a proposição da alternativa d (negativa da condicional) expressa corretamente a tradução da linguagem condicional para uma proposição conjuntiva. Resposta: letra d. 4) Analise as seguintes proposições: I. QP → é F, ou seja ( ) FQPV =→ II. QR ~∨ é V, ou seja ( ) VQRV =∨ ~ III. ( ) PRQ ∧↔ é F, ou seja ( )( ) FPRQV =∧↔ Os valores lógicos (V , se verdadeiro; F, se falso) de P, Q e de R são, respectivamente: a) V, V, V b) V, V, F c) V, F, V d) V, F, F e) F, V, V Solução: I. A proposição é uma condicional e seu valor lógico é falso, logo a proposição antecedente é verdadeira e a proposição conseqüente é falsa, ou seja: P é verdadeira e Q é falsa. Imediatamente, eliminam-se as alternativas a, b, e. Da proposição II vem a alternativa correta: R deve ter valor lógico verdadeiro para que a proposição disjuntiva tenha valor lógico verdadeiro. Resposta: letra c. 5) Beatriz, Carmem e Diana são esposas de Eduardo, Felipe e Gabriel, mas não necessariamente nessa ordem. Sabe-se que: I. Eduardo é marido da mulher mais jovem; II. Beatriz é mais velha que a esposa de Felipe; III. As três mulheres citadas têm idades distintas;
  3. 3. Prof. Milton Araújo cursoanpad@gmail.com3 IV. Não há bigamia entre esses casais. Logo, pode-se afirmar com certeza que: a) Beatriz é a esposa de Gabriel. b) A idade de Beatriz é menor que a de Carmem. c) Diana é esposa de Felipe. d) Gabriel é marido de Carmem. e) Eduardo é marido de Beatriz. Solução: Das proposições dadas, sabe-se que Beatriz não é esposa do Eduardo, nem do Felipe, logo, ela só pode ser esposa do Gabriel. Resposta: letra a. 6) Em determinado campeonato de futebol, analisam-se as condições de alguns resultados: I. Se a Portuguesa venceu, nem o Estrela nem o Navegantes foram para a próxima fase. II. Se o Navegantes não foi para a próxima fase, o Ipiranga venceu. III. Se o Ipiranga venceu, o Serrinha foi rebaixado. Sabe-se que o Serrinha não foi rebaixado; portanto: a) a Portuguesa não venceu e o Navegantes não foi para a próxima fase. b) O Estrela e o Navegantes não foram para a próxima fase. c) O Navegantes não foi para a próxima fase e o Ipiranga não venceu. d) A Portuguesa e o Ipiranga não venceram. e) O Navegantes não foi para a próxima fase ou o Ipiranga venceu. Solução: Questão de lógica de argumentação. Usamos aqui nosso método1 rápido para encontrar a resposta. Sejam as proposições: Pv : A Portuguesa venceu; E : O Estrela foi para a próxima fase; N : O Navegantes foi para a próxima fase; Iv : O Ipiranga venceu; Sr : O Serrinha foi rebaixado. O argumento, em linguagem simbólica, fica assim: Condição de Validade I ( )NEPv ~~ ∧→ V II IvN →~ V III SrIv → V IV Sr~ V C ? V Da premissa IV sabe-se que o Serrinha não foi rebaixado. Desse modo, na premissa III sabe-se que é falso que o Ipiranga venceu. Na seqüência, sabe-se, também, na premissa II, que é falso que o Navegantes não foi para a próxima fase. Finalmente, da premissa I tem-se que é falso que a Portuguesa venceu. Daí, tem-se a conclusão: Nem a Portuguesa e nem o Ipiranga venceram. Resposta: letra d. 7) Se Alfredo ama Rebeca, ele vai se casar com ela e não vai comprar uma casa. Caso ele se case, não comprará a casa. Mas, de fato, ele comprou uma casa. Logo, pode-se dizer que: a) Alfredo vai se casa com Rebeca. b) Alfredo não comprar a casa. c) Alfredo vai se casar com Rebeca e vai comprar uma casa. d) Alfredo ama Rebeca. 1 Nota do professor: o método que usamos para validar argumentos é visto em uma aula do curso presencial. Ele é um método fácil de entender no modo “expositivo”, mas difícil de ser explicado de forma escrita. Nossos alunos do curso presencial conseguem resolver qualquer questão de lógica de argumentação em menos de 30 segundos.
  4. 4. Prof. Milton Araújo cursoanpad@gmail.com4 e) Alfredo não ama Rebeca. Solução: Mais um questão de lógica de argumentação. Sejam as proposições: Ar : Alfredo ama Rebeca; Cr : Alfredo vi se casar com Rebeca; Cc : Alfredo compra uma casa; O argumento, em linguagem simbólica, fica assim: Condição de Validade I ( )CcCrAr ~∧→ V II CcCr ~→ V III Cc V C ? V Da premissa III sabe-se que ele comprou a casa, então, na premissa II tem-se que é falso que ele se casou com Rebeca. Na premissa I, então, também se sabe que ele não ama Rebeca. Resposta: letra e. 8) O que caracteriza uma tautologia e uma contradição é o fato de: a) Ambas apresentarem, em suas tabelas-verdade, somente valores-verdade verdadeiros. b) Ambas apresentarem, em suas tabelas-verdade, somente valores-verdade falsos. c) Apresentarem, em suas tabelas-verdade, apenas valores-verdade verdadeiros e apenas valores- verdade falsos, respectivamente. d) Apresentarem, em suas tabelas-verdade, apenas valores-verdade falsos e apenas valores-verdade verdadeiros, respectivamente. e) Ambas apresentarem, em suas tabelas-verdades, valores-verdades intercalados entre falso e verdadeiro. Solução: Outra questão puramente conceitual. “Tautologia é toda proposição lógica composta que sempre terá resultado lógico verdadeiro”. “Contradição é toda proposição lógica composta que sempre terá resultado lógico falso”. Resposta: letra c. 9) Sejam as proposições: :P Faz frio. :Q Chove. :R Faz sol. A proposição composta ( ) ( )RPQP ~~~ ∧→∧ , na linguagem corrente, é: a) Faz frio e chove, mas faz não faz frio e faz sol. b) Faz frio e não chove, mas faz frio e não faz sol. c) Faz frio e não chove, desde que faça frio e não faça sol. d) Se faz frio e não chove, então não faz frio e não faz sol. e) Se faz frio e não chove, não é verdade que faz frio e faz sol. Solução: Questão muito simples. Basta levar a proposição dada em linguagem simbólica para a linguagem corrente. Aqui nem sequer o uso de álgebra de proposições foi exigido do candidato. Resposta: letra d. 10) “Hoje é quarta-feira ou hoje é quinta-feira, e hoje é quarta-feira ou hoje é dia de feira no supermercado”. Dito de outra forma, é: a) “se hoje é quarta-feira, hoje é dia de feira no supermercado”. b) “se hoje é dia de feira no supermercado, hoje é quarta-feira e não é quinta-feira”. c) “se hoje não é quarta-feira, hoje é quinta-feira e é dia de feira no supermercado”. d) “hoje não é quarta-feira e não é quinta-feira”.
  5. 5. Prof. Milton Araújo cursoanpad@gmail.com5 e) “se hoje é quinta-feira, hoje não é dia de feira no supermercado”. Solução: Ao contrário da questão anterior, esta já exigiu do candidato um bom domínio da álgebra proposicional. Sejam as proposições: p : hoje é quarta-feira; q : hoje é quinta-feira; r : hoje é dia de feira no supermercado. A proposição dada, em linguagem simbólica, fica assim: ( ) ( )rpqp ∨∧∨ Pela propriedade distributiva, pode-se escrever: ( )rqp ∧∨ . Negando-se duplamente a proposição acima: ( )( )rpp ∧∧ ~~~ A proposição acima é equivalente à condicional: ( )rqp ∧→~ , que, em linguagem simbólica fica: “Se hoje não é quarta-feira, então hoje é quinta-feira e é dia de feira no supermercado”. Resposta: letra c. 11) Considere a tabela abaixo, na qual jiij BCA += com { }3,2,1, ∈ji . + 1B 2B 3B 1C 11A 12A 13A 2C 21A 22A 23A 3C 31A 32A 33A a) 1C = 2 b) 11A = 4 c) 12A = 5 d) 22A = 1 e) 23A = -1 Solução: Basta completar o quadro dado com as informações do enunciado: + 1B = 5 2B = 3 3B = -2 1C = -1 11A = 4 12A = 2 13A = -3 2C = 2 21A = 7 22A = 5 23A = 0 3C = 7 31A = 12 32A = 10 33A = 5 Resposta: letra b. 12) Considere a proposição composta ( ) ( )QPQP ∧∨∨ ~~ . Uma forma alternativa (ou simplificada) de expressar a mesma proposição é a) QP ∧ b) QP ~∧ c) QP ∧~ d) QP ~~ ∧ e) P~ Solução: Por De Morgan, tem-se, inicialmente: ( ) ( )QPQP ∧∨∧ ~~~ . Pela propriedade distributiva: ( )QQP ∨∧ ~~ . A expressão dentro do parênteses é uma tautologia. Numa proposição conjuntiva em que uma delas for tautológica, o resultado será equivalente à outra proposição. No caso acima o resultado é P~ . Resposta: letra e. 13) Roberto viajou para Moscou no inverno. Durante o tempo em que esteve lá, houve 6 tardes e 3 manhãs sem neve; nevou 5 vezes, mas nunca durante a manhã e à tarde de um mesmo dia. Então, Roberto permaneceu em Moscou por a) 5 dias b) 6 dias c) 7 dias d) 8 dias e) 9 dias Solução: Esta questão consta no nosso simulado2 de número 13 (setembro de 2004), questão 8. 2 Consulte o caderno de Simulados do Instituto Integral.
  6. 6. Prof. Milton Araújo cursoanpad@gmail.com6 Somando-se todos os turnos com neve e sem neve, vem: 6 + 3 + 5 = 14. Deve-se dividir por 2... Resposta: letra c. 14) Assinale a alternativa que apresenta uma estrutura de argumento não-válida. a) Não é verdade que, se Ricardo foi à festa, Renata foi à festa. Portanto, se Ricardo não foi à festa, Renata não foi à festa. b) Ricardo não foi à festa e Renata não foi à festa. Consequentemente, ambos não foram à festa. c) Não é o caso que Ricardo foi à festa ou Renata foi à festa. Logo, Ricardo não foi à festa ou Renata não foi à festa. d) Se Ricardo não foi à festa, Renata não foi à festa. Portanto, não é verdade que, se Ricardo foi à festa, Renata foi à festa. e) Não é o caso que, se Ricardo não foi à festa, Renata foi à festa. Assim, Renata não foi à festa. Solução: Analisam-se os argumentos um a um... Alternativa a) Para que a proposição dada como premissa seja verdadeira, é necessário que sua antecedente seja verdadeira e sua conseqüente seja falsa. Observe-se que a premissa traz a negação da proposição condicional. A conclusão do argumento o torna válido. Alternativa b) A premissa é uma proposição conjuntiva, logo, ambas as proposições simples que formam a composta devem ter valor lógico verdadeiro. Argumento válido. Alternativa c) A premissa é a negação de uma proposição disjuntiva, logo, nem Ricardo, nem Renata foram à festa. Argumento válido. Alternativa d) A premissa é a contrária ou inversa da conclusão. Argumento não-válido. Resposta: letra d. 15) Karen, Luiza, Mara Nestor e Olga foram a um parque de diversões onde havia as seguintes opções: montanha russa, carrossel e trem-fantasma . sabe-se que I. todos andaram em um dos brinquedos citados II. Mara foi a única que brincou sozinha III. Olga e Nestor fizeram escolhas distintas IV. Luiza não brincou com Olga V. Karen não andou no trem-fantasma VI. Olga não andou no carrossel VII. Mara não andou no trem-fantasma Logo, é CORRETO afirmar que: a) Mara andou na montanha russa. b) Luiza e Karen andaram no carrossel. c) Nestor e Luiza andaram na montanha russa. d) Karen e Nestor andaram no trem-fantasma. e) Nestor e Luiza andaram no trem-fantasma. Solução: O enunciado permite que se monte o seguinte quadro: Karen Luíza Mara Nestor Olga Montanha russa X X Carrossel X Trem-fantasma X X Resposta: letra e. 16) Sabe-se que, I. com 2 triângulos eqüiláteros de lado 1, forma-se um losango de lado 1 II. com 8 triângulos eqüiláteros de lado 1, forma-se um losango de lado 2 III. com 18 triângulos eqüiláteros de lado 1, forma-se um losango de lado 3 IV. com 32 triângulos eqüiláteros de lado 1, forma-se um losango de lado 4 Logo, com 338 triângulos de lado 1, forma-se um losango de lado a) 12 b) 13 c) 14 d) 15 e) 16
  7. 7. Prof. Milton Araújo cursoanpad@gmail.com7 Solução: Os quocientes entre o número de triângulos e o valor do lado do losango formam a seguinte Progressão Aritmética: 2, 4, 6, 8, ... Assim, pode-se escrever: ( ) rnaan ⋅−+= 11 ( ) 212 338 ⋅−+= n n 11 169 −+= n n 2 169 n= 13=n Resposta: letra b. 17) Considere as seguintes premissas: I. Nenhum estudante é ignorante. II. Todo administrador é estudante. Uma conclusão possível, decorrente dessas premissas, é a de que a) nenhum administrador é ignorante. b) algum administrador é ignorante. c) todo administrador é ignorante. d) algum estudante é ignorante. e) todo estudante é administrador. Solução: Resposta: letra a. 18) Seis estudantes vão viajar de ônibus para visitar certa empresa. Foram reservadas as poltronas 7 e 8, 11 e 12, 15 e 16. essas poltronas são seqüenciais e ficam do mesmo lado do corredor, como mostra a figura. Antes de os estudantes entrarem no ônibus, foram designados os números das poltronas que cada um ocuparia, levando-se em consideração as seguintes informações: • Jorge e Pedro são irmãos e é melhor que não fiquem em poltronas consecutivas nem adjacentes. • Marcus e Bia pretendem ler, juntos um livro durante a viagem; portanto, devem sentar-se em poltronas consecutivas. • Aline e Gabi são amigas, mas não estão uma ao lado da outra, pois as duas gostam de sentar-se no corredor • Bia não está sentada atrás de Aline. Assim, pode-se afirmar que um dos arranjos possíveis é: a) Marcus e Bia na frente, Aline e Pedro no meio e Gabi e Jorge atrás. b) Aline e Pedro na frente, Marcus e Bia no meio e Gabi e Jorge atrás. c) Aline e Pedro na frente, Gabi e Jorge no meio e Marcus e Bia atrás. d) Jorge e Pedro na frente, Marcus e Bia no meio, Gabi e Aline atrás. e) Aline e Gabi na frente, Marcus e Bia no meio e Pedro e Jorge atrás. Solução: Para satisfazer a primeira consideração. Jorge e Pedro deverão ocupar poltronas na primeira e terceira fileiras mostradas na figura da questão. Disso, resulta que Marcus e Bia deverão ocupar as poltronas do centro. Aline e Gabi deverão ocupar as poltronas 8 e 16 (não necessariamente nesta
  8. 8. Prof. Milton Araújo cursoanpad@gmail.com8 mesma ordem). Entretanto, se Aline estiver na poltrona 8, Bia deverá estar na poltrona 11. Desse modo, um possível arranjo seria: Pedro (poltrona 7), Aline (poltrona 8); Bia (poltrona 11, Marcus (poltrona 12); Jorge (poltrona 15) e Gabi (poltrona 16). Resposta: letra b. 19) Em um planta longínquo, a moeda é o dinheiru, simbolizada por Ж$. Sabe-se que, nesse planeta, existe a seguinte tabela promocional de preços para alguns animais: 2 rinomachos por Ж$ 10,00; 3 rinofêmeas por Ж$ 9,00 e 6 rinobebês por Ж$ 2,00. se Estevaldo gastou Ж$ 100,00 nessa promoção, qual o número máximo de rinomachos que ele comprou, considerando-se que gastou todo seu montante, levou ao menos um animal de cada tipo e comprou 100 animais? a) 4 b) 8 c) 10 d) 12 e) 14 Solução: Questão idêntica à questão 19 do nosso primeiro simulado, e também à questão RL/14 – JUN/05, resolvida em nossa super-aula de revisão, na véspera do teste... Montando-se as equações: 5102 =⇒= RmRm (o valor de cada rinomacho é Ж$ 5,00) 393 =⇒= RfRf (o valor de cada rinofêmea é Ж$ 3,00) 3126 =⇒= RbRb (o valor de cada rinobebê é Ж$ 0,33) A partir daí, escrevem-se as seguintes equações (uma para a quantidade total de animais e outra para o valor gasto pelo Estevaldo): 100 3 35 100 =++ =++ b fm bfm isolando-se b na primeira equação, e, após multiplicar-se toda a segunda equação por 3, substituir-se o novo valor de b nela, vem: 200814 300100915 100 =+ =−−++ −−= fm fmfm fmb Agora, isola-se o f : 8 14200 m f − = , simplificando-se: 4 7100 m f − = Para os valores apresentados nas alternativas da questão, o número máximo de rinomachos que ele poderia ter comprado seriam 12. Entretanto, para poder participar da “promoção”, ele deverá adquirir quantidades de rinofêmeas em número múltiplo de 3 (ver tabela a seguir). Desse modo, o número máximo possível de rinomachos “dentro da promoção” é 4. m f b Ж$ 4 18 78 100,00 viável 8 11 81 100,00 inviável 10 7,5 82,5 100,00 inviável 12 4 84 100,00 inviável (4 não é múltiplo de 3) 14 0,5 85,5 100,00 inviável Resposta: letra a. 20) Manoel recebeu as seguintes instruções para sua viagem: I. Siga à esquerda e retorne se, e somente se, seu destino for Albuquerque. II. Se seu destino for Albuquerque, siga à direita. III. Siga à esquerda. IV. Retorne ou siga para a colônia de férias. Sabe-se que Manoel obedeceu a todas as instruções. Logo a) seu destino era Albuquerque. b) seu destino não era Albuquerque e ele seguiu para a colônia de férias. c) chegou a Albuquerque, seguindo à esquerda. d) seguiu sempre em frente e à direita.
  9. 9. Prof. Milton Araújo cursoanpad@gmail.com9 e) retornou. Solução: Mais uma questão de lógica de argumentação. Observe que, nesta questão, as premissas “seguir à direita” e “seguir à esquerda” são contraditórias. Colocando-se o argumento em linguagem simbólica: Condição de Validade I ( ) are ↔∧ V II da → V III e V IV fr ∨ V C ? V Da premissa III “seguir à esquerda” deve ser verdadeira, então, na premissa II, “seguir à direita” é falsa, e, portanto, o destino de Manoel não é Albuquerque. Na premissa I verifica-se que “retornar” é falsa, logo, na premissa IV, “ir para a colônia de férias” deve ser verdadeira. Conclusão: Manoel não foi para Albuquerque e foi para a colônia de férias. Resposta: letra b.
  10. 10. Prof. Milton Araújo cursoanpad@gmail.com10 1) Uma urna contém bolinhas de gude de várias cores: oito amarelas, doze vermelhas, cinco brancas, treze azuis e sete verdes. A quantidade mínima de bolinhas de gude que precisamos retirar da urna para garantir que teremos três bolinhas de uma mesma cor é a) 11 b) 15 c) 21 d) 23 e) 28 Solução: Questões desse tipo requerem um raciocínio simples do candidato. Basta que se retirem duas bolinhas de cada cor (perfazendo-se 10, até o momento). A próxima bolinha retirada completará as três de uma mesma cor. No total, ter-se-á retirado 11 bolinhas. Resposta: letra a. 2) Considere a seguinte seqüência de figuras: A figura que melhor completa a posição ocupada pelo símbolo ? é a) b) c) d) e) Solução: No primeiro conjunto de estrelas, o pontinho se desloca para a esquerda (sentido horário), uma ponta de cada vez. No segundo conjunto de estrelas, o deslocamento da bolinha passa a ser de duas em duas pontas da estrela. No terceiro conjunto de estrelas, o deslocamento da bolinha é de três em três pontas. Assim, na posição marcada com ? estará a figura da alternativa d. Resposta: letra d. 3) Sejam as proposições :p “O cão é bravo” e :q “O gato é branco”. A linguagem simbólica equivalente à proposição “Não é verdade que o cão é bravo ou o gato não é branco” é a) qp ∧~ b) qp ~~ ∨ c) qp → d) qp ∨~ e) qp ~∨ Solução: A proposição dada, em linguagem corrente, poderá ser facilmente colocada em sua forma simbólica: ( )qp ~~ ∨ Aplicando-se a Lei de De Morgan à expressão acima, vem: qp ∧~ Resposta: letra a. 4) Tio Fabiano vai dividir barras de chocolate para três sobrinhos: Rui, Sílvio e Tomé. Rui, por ser o mais velho, recebeu a metade das barras mais meia barra. Do que restou, Sílvio recebeu a metade mais meia barra e para Tomé, que é o mais novo, sobrou uma barra. Assim, a quantidade de barras que Sílvio recebeu foi a) 1,5 b) 2 c) 2,5 d) 3 e) 3,5 Solução: Considerando-se que o número inicial de barras seja x , :Rui recebeu a metade das barras de chocolate e mais meia barra, ou seja, recebeu 2 1 2 + x . Então, restou a outra metade das barras
  11. 11. Prof. Milton Araújo cursoanpad@gmail.com11 menos meia barra, ou seja: 2 1 2 − x . Metade dessa quantidade mais meia barra foi dada a Sílvio, ou 2 1 4 1 4 +− x , que serão 4 1 4 + x barras para Sílvio. Agora, somando-se as quantidades que os três receberam, teremos a quantidade inicial de barras, ou seja: ( ) x xx =+      ++      + 1 4 1 42 1 2 (os parênteses na expressão ao lado são para evidenciar as quantidades de barras que cada um dos sobrinhos recebeu). Resolvendo-se a equação, tem-se 7=x . Assim, Rui recebeu 4 barras e Sílvio recebeu 2 barras. Existe um modo mais rápido de se resolver esta questão. Dicas, atalhos, macetes e truques são passados somente aos nossos alunos, durante o curso preparatório. Resposta: letra b. 5) Ao redor de uma mesa redonda estão quatro amigas, Karen, Pámela, Rita e Yasmin, sentadas em posições diametralmente opostas. Cada uma delas tem uma nacionalidade diferente: uma é italiana, outra é francesa, outra é portuguesa e a outra é alemã, não necessariamente nessa ordem. Considerem-se, ainda, as informações: • “Sou alemã e a mais nova de todas”, diz Karen. • “Estou sentada à direita da Karen”, diz Pâmela. • “Rita está à minha direita”, diz a francesa. • “Eu sou italiana e estou sentada em frente a Pâmela”, diz Yasmin. É CORRETO afirmar que a) Pâmela é francesa e Rita é italiana. b) Pâmela é italiana e Rita é portuguesa. c) Rita é francesa e Yasmin é portuguesa. d) Rita é portuguesa e Yasmin é francesa. e) Yasmin é portuguesa e Pámela é italiana. Solução: Das informações dadas no enunciado, tem-se que: Resposta: letra a. 6) Considere os seguintes conjuntos de premissas e conclusões: I. Algum avô é economista. Algum economista é avô. II. Nenhum arquiteto é cantor. Logo, nenhum cantor é arquiteto. III. Todo advogado é poeta. Logo, todo poeta é advogado. Qual(is) argumento(s) é(são) válido(s)? a) somente I b) somente II c) somente I e II d) somente II e III e) todos
  12. 12. Prof. Milton Araújo cursoanpad@gmail.com12 Solução: I. Conclusão: Válido II. Conclusão: Válido III. Conclusão: Não-válido Resposta: letra c. 7) Considere a seqüência de quadros, em que cada quadro é dividido em nove casas numeradas, dispostas em linhas e colunas, da seguinte maneira: 1 2 3 10 11 12 19 20 21 4 5 6 13 14 15 22 23 24 7 8 9 , 16 17 18 , 25 26 27 , ... A posição que o número 2006 ocupa no quadro é a) linha 1 e coluna 3 b) linha 2 e coluna 2 c) linha 2 e coluna 3 d) linha 3 e coluna 1 e) linha 3 e coluna 2 Solução: Observa-se, ,pelos quadros apresentados no enunciado, que os valores preenchidos na última casela de cada quadro são múltiplos de 9. O múltiplo de 9 mais próximo de 2006 é o 2007. Como 2007 só poderá estar localizado na última casela de cada quadro, segue-se que 2006 estará localizado imediatamente à esquerda do 2007. Portanto, 2006 está na terceira linha, segunda coluna. Resposta: letra e. 8) Se x e y são números inteiros, a operação Θ é definida por x Θ y = ( )yxy − , na qual a multiplicação e a subtração são as usuais. Assim, o valor da expressão 2 Θ (3 Θ 4) é a) -28 b) -24 c) -3 d) 2 e) 8 Solução: Seguindo-se a regra de aplicação do operador Θ, deveremos subtrair o número y do número x e multiplicar o resultado por y . Resolvendo a expressão dada, iniciando pelo parênteses: 2 Θ (3 Θ 4) = 2 Θ 4.(3 - 4) = 2 Θ -4 = -4.(2 – (-4)) = -4 . 6 = -24 Resposta: letra b. 9) Cinco amigos,m Abel, Deise, Edgar, Fábio e Glória, foram lanchar e um deles resolveu sair sem pagar. O garçom percebeu o fato, correu atrás dos amigos que saíam do restaurante e chamou-os para prestarem esclarecimentos. Pressionados, informaram o seguinte: • “Não fui eu nem o Edgar”, disse Abel. • “Foi o Edgar ou a Deise”, disse Fábio. • “Foi a Glória”, disse Edgar. • “O Fábio está mentindo”, disse Glória. • “Foi a Glória ou o Abel”, disse Deise. Considerando que apenas um dos cinco amigos mentiu, pode-se concluir que quem resolveu sair sem pagar foi a) Abel b) Deise c) Edgar d) Fábio e) Glória Solução:
  13. 13. Prof. Milton Araújo cursoanpad@gmail.com13 Em questões envolvendo verdades e mentiras, o candidato deverá sempre encontrar aquele único elemento do grupo que diverge dos demais. No caso em tela, significa que deveremos encontrar o único que está mentindo. Vamos inicialmente inferir que o mentiroso é Abel. Ora, se ele fosse o mentiroso, sua afirmação seria falsa, indicando que o culpado seria Abel ou Edgar. Como ainda não poderemos confirmar se o mentiroso do grupo é realmente o Abel, vamos analisar as outras afirmações em busca de uma possível contradição... Se o mentiroso for realmente o Abel, as demais afirmações deverão ser todas verdadeiras, ou seja: Fábio, Edgar, Glória e Deise estariam dizendo a verdade. Mas observe que a afirmação de Glória coloca nossa inferência inicial em contradição, uma vez que afirma que Fábio está mentindo. Se assim fosse, haveria dois mentirosos em vez de apenas um: Abel e Fábio. Como esta conclusão não está de acordo com o enunciado, que diz haver apenas um mentiroso, sabemos que Abel está dizendo a verdade, e, assim, dois suspeitos já estão excluídos: o próprio Abel e Edgar. Passemos nossa inferência para a segunda afirmação: tomemos a afirmação de Fábio como sendo falsa. Isto significaria dizer que, sendo a afirmação falsa, não foram Edgar e nem Deise. Já sabemos que Edgar está fora da lista de suspeitos. Se a afirmação de Fábio for realmente falsa, então as demais afirmações deverão ser todas verdadeiras, isto é, Edgar, Glória e Deise estarão dizendo a verdade. Passemos a uma nova busca por possíveis contradições... Observe que não há mais contradições: Edgar disse que foi Glória; Glória diz que Fábio mente e Deise afirma que foi Glória ou Abel. Como já sabemos que não foi Abel, a afirmação de Deise aponta para Glória, logo, Glória saiu sem pagar a conta. Resposta: letra e. 10) Das proposições “Nenhuma fruta marrom é doce” e “Algum abacaxi é doce”, conclui-se que a) “Algum abacaxi não é marrom”. b) “Todo abacaxi é marrom”. c) “Nenhum abacaxi é marrom”. d) “Algum abacaxi é marrom”. e) “Todo abacaxi não é marrom”. Solução: Na figura acima, o diagrama que representa abacaxi (A) pode ser representado por qualquer um dos diagramas que aparecem nas cores azul ou vermelho. Em qualquer das posições apresentadas para o diagrama A, observa-se que sempre haverá algum elemento de A que não pertence ao diagrama M. Daí, a conclusão para o argumento categórico: algum abacaxi não é marrom. Nota do professor: A lógica de argumentação pode ser complicada de se entender em um primeiro momento. Entretanto, os alunos do curso preparatório do Instituto Integral aprendem técnicas para a resolução rápida e segura de qualquer tipo de argumento (cerca de dez segundos são suficientes!). Como o método é expositivo, é necessário um conjunto de aulas presenciais para a fixação dessas técnicas. Resposta: letra a.
  14. 14. Prof. Milton Araújo cursoanpad@gmail.com14 11) Edmundo percebeu que, na terça-feira, 27 de julho, iriam terminar as suas férias; verificou que o próximo feriado é o dia 7 de setembro e viu que esse dia cai a) numa segunda-feira b) numa terça-feira c) numa quarta-feira d) num sábado e) num domingo Solução: Partindo-se do dia 27 de julho, restam 4 dias para finalizar o mês de julho. Agosto tem 31 dias. Até 7 de setembro, tem-se um total de 4 + 31 + 7 = 42 dias. Observe que 42 é múltiplo de 7, o que indica que o dia 7 de setembro também cairá numa terça-feira (lembre-se de que os dias da semana se repetem a cada sete dias!). Resposta: letra b. 12) Considere a proposição “Não é verdade que, se Maria não é elegante, então ela é inteligente”. Uma proposição logicamente equivalente é a) “Maria é elegante ou é inteligente”. b) “Maria é elegante e não é inteligente”. c) “Maria não é elegante e é inteligente”. d) “Maria não é elegante e nem é inteligente”. e) “Maria não é elegante ou não é inteligente”. Solução: Na linguagem simbólica, tem-se: ( )ie →~~ , que uma das formas de se negar uma proposição condicional. A outra seria pela equivalência (veja sua apostila!) que indica que o antecedente deverá ser mantido e o conseqüente deve ser negado. Assim, chegamos rapidamente à resposta: “Maria não é elegante e nem inteligente”. Resposta: letra d. 13) Três amigos, Bernardo, Davi e Fausto, de sobrenome Pereira, Rocha e Silva, não necessariamente nessa ordem, foram assistir, cada um, a um filme diferente – ação, comédia e terror. Sabe-se que: • Bernardo não assistiu ao filme de terror nem ao de ação. • Pereira assistiu ao filme de ação. • O sobrenome de Davi é Silva. É CORRETO afirmar que Solução: Questões dessa natureza se resolvem rapidamente por meio de um quadro: Bernardo Davi Fausto Sobrenome Rocha Silva Pereira Filme comédia terror ação Resposta: letra b. 14) Considere as seguintes proposições: I. 12 > ou 632 = . II. x∀ , ℜ∈x , se 2<x , então 1=x ou 0=x . III. 54 −<− . Os valores lógicos dessas proposições são, respectivamente, a) F F V b) F V F c) V F F d) V F V e) V V V Solução: I. Proposição disjuntiva (ou). Como 12 > é verdadeira e 632 = é falsa, a proposição composta é verdadeira; II. Proposição falsa, pois 2<x para qualquer valor real menor que 2 e não apenas para zero ou um; III. Proposição falsa. Quanto maior for o módulo de um número negativo, menor ele será! Resposta: letra c.
  15. 15. Prof. Milton Araújo cursoanpad@gmail.com15 15) A figura abaixo mostra uma engrenagem formada por três rodas dentadas iguais (de mesmo raio). Em duas das rodas, há bandeirinhas, e a roda de cima girou menos de uma volta e parou na posição indicada pela bandeirinha pontilhada. Nessas condições, qual das seguintes alternativas apresenta a posição aproximada da bandeirinha da outra roda? a) b) c) d) e) Solução: A engrenagem de cima gira no sentido anti-horário (vide enunciado da questão). Assim, a engrenagem abaixo à esquerda gira no sentido horário, e, a da direita, gira novamente no sentido anti-horário, colocando a bandeirinha contida nessa engrenagem na posição indicada pela alternativa d. Resposta: letra d. 16) Considere as seguintes informações sobre uma prova de concurso composta de dois problemas, X e Y: • 923 candidatos acertaram o problema X. • 581 erraram o problema Y. • 635 acertaram X e Y. O número de candidatos que erraram os problemas X e Y é a) 183 b) 293 c) 342 d) 635 e) 689 Solução: A questão se resolve facilmente por meio de diagramas. Dica: inicie sempre esse tipo de questão pela interseção de todos os conjuntos. Resposta: letra b. 17) Considerem-se as seguintes proposições: • “Todas as pessoas ricas são cultas”.
  16. 16. Prof. Milton Araújo cursoanpad@gmail.com16 • "Nenhum pescador é culto”. • “Hugo é rico”. Uma conclusão que necessita de todas essa proposições como premissas é a) “Ricos são cultos”. b) “Hugo não é culto”. c) “Hugo não é pescador”. d) “Hugo é rico e pescador”. e) “Hugo é um pescador culto”. Solução: Resposta: letra c. 18) Considerem-se as seguintes premissas: • “Todos os jogadores de futebol são bonitos”. • “Lucas é bonito”. • “Modelos fotográficos são bonitos”. Considerem-se, também, as seguintes conclusões: I. “Lucas não é jogador de futebol nem modelo fotográfico”. II. “Lucas é jogador de futebol e também modelo fotográfico”. III. “Lucas é bonito e jogador de futebol”. Considerando as premissas, a validade de cada argumento gerado pelas conclusões I, II e III é, respectivamente, a) válido, válido, válido. b) não-válido, válido, válido. c) válido, não-válido, não-válido. d) não-válido, válido, não-válido. e) não-válido, não-válido, não-válido Solução: Observe que as premissas não permitem determinar como se relacionam os diagramas F e M. Também não é possível determinar exatamente onde Lucas deve estar. Pode ser em qualquer das posições indicadas no diagrama, nas cores azul, verde ou vermelha. Em outras palavras, o argumento é inconcludente. Desse modo, nenhuma das conclusões apresentadas poderão validá- lo. Resposta: letra e.
  17. 17. Prof. Milton Araújo cursoanpad@gmail.com17 19) As afirmativas a seguir correspondem a condições para a formação de um determinado número X de três dígitos. • 429 não tem nenhum dígito em comum com esse número. • 479 tem apenas um dígito em comum com esse número, mas ele não está em seu devido lugar. • 756 tem apenas um dígito em comum com esse número, e ele está em seu devido lugar. • 543 tem apenas um dígito em comum com esse número, mas ele não está em seu devido lugar. • 268 tem apenas um dígito em comum com esse número, e ele está em seu devido lugar. O número X de três dígitos que satisfaz essas condições é a) 837 b) 783 c) 738 d) 736 e) 657 Solução: • Das duas primeiras afirmações, excluem-se os algarismos 4, 2 e 9 do número procurado e pode-se inferir que o 7 é um dos dígitos do número procurado; • A terceira afirmação exclui os algarismos 5 e 6 do número procurado e confirma o 7 na primeira posição; • A quarta afirmação confirma o 3 como o segundo algarismo do número procurado. Como esse algarismo não está no seu devido lugar, conclui-se que o 3 é o segundo algarismo do número procurado; • A última afirmação completa o número procurado, visto que os algarismos 2 e 6 já haviam sido excluídos. Desse modo, o algarismo 8 completa o número procurado. Resposta: letra c. 20) Cada uma das três amigas Ana, Bia e Carla, gosta de apenas uma das seguintes frutas: maçã, banana e pêra, não necessariamente nessa ordem. Ana gosta de pêra, Bia não gosta de pêra e Carla não gosta de banana. Se apenas uma dessas três afirmações for verdadeira e se cada uma das três amigas gosta de uma fruta diferente, então as frutas de que Ana, Bia e Carla gostam são, respectivamente, a) banana, pêra e maçã. b) pêra, maçã e banana. c) maçã, banana e pêra. d) pêra, banana e maçã. e) banana, maçã e pêra. Solução: Analisando-se as afirmações feitas: • Ana gosta de pêra; • Bia não gosta de pêra; • Carla não gosta de banana. Observe que, se a primeira afirmação for verdadeira, a segunda também o será, o que contradiz o enunciado. Assim, sabemos com certeza que a primeira afirmação é falsa. Passemos à segunda afirmação. Se ela fosse verdadeira, então Bia não gosta de pêra. Como já sabemos que a primeira é falsa, Ana também não gosta de pêra, resta que Carla é quem gosta de pêra. Mas, observe que a terceira afirmação também seria verdadeira, o que contradiz o enunciado (apenas uma é verdadeira). Então a afirmação 2 também é falsa, o que nos leva a concluir que Bia é quem gosta de pêra. A terceira afirmação é verdadeira: Carla não gosta de banana. Desse modo, Ana é quem gosta de banana e Carla gosta de maçã. Resposta: letra a.
  18. 18. Prof. Milton Araújo cursoanpad@gmail.com18 1) “Sejam X e Y conjuntos não vazios. Se a afirmação ‘todo X é Y’ é ______, então a afirmação ‘nenhum X é Y’ é falsa e a afirmação ‘alguns X são Y’ é ______. Agora, se a negação de ‘todo X é Y’ é uma afirmação falsa, então a afirmação ‘alguns X são Y’ será ______.” Qual das seguintes alternativas completa de forma CORRETA, na ordem, as lacunas do texto acima? a) falsa, verdadeira; falsa. b) falsa; falsa; falsa. c) verdadeira; verdadeira; verdadeira. d) verdadeira; falsa; falsa. e) verdadeira; falsa; verdadeira. Solução: Se a afirmação “nenhum X é Y” é falsa, então a afirmação “todo X é Y” é verdadeira e a afirmação “alguns X são Y” também é verdadeira. A negação de “todo X é Y” é “algum X não é Y”. O enunciado diz que esta última afirmação é falsa, logo, a afirmação “alguns X são Y” será verdadeira. Resposta: letra c. 2) Sete pessoas comeram duas pizzas. Cada uma das pizzas estava dividida em dez pedaços iguais. Sabendo-se que cada uma das pessoas comeu ao menos um pedaço de pizza, que não sobraram pedaços, e ainda, que cada uma só comeu pedaços inteiros sem deixar restos, pode-se ter certeza de que a) uma delas comeu, no mínimo, três pedaços. b) alguém comeu quatro pedaços. c) uma delas comeu somente um pedaço. d) todas comeram dois pedaços. e) algumas comeram dois pedaços e as demais comeram três. Solução: O maior múltiplo de 7 contido em 20 é o 14. Significa que cada pessoa pode ter recebido dois pedaços. Qualquer que seja a distribuição dos demais pedaços, tem-se que uma delas pode ter comido, no mínimo, três pedaços. Resposta: letra a. 3) Considera as proposições a seguir: I. Josi é morena ou não é verdade que Josi é morena e Jorge é loiro. II. Ou o café não está quente ou o bolo não está delicioso se, e somente se, o café está quente e o bolo está delicioso. Pode-se afirmar que a) ambas as proposições são tautologias. b) ambas as proposições são contradições. c) a proposição I é uma contradição e a II é uma tautologia. d) a proposição I é uma tautologia e a II é uma contradição. e) ambas as proposições não são tautologias. Solução: I. Seja a proposição dada em linguagem simbólica: :m Josi é morena; :l Jorge é loiro. A proposição composta é: ( )lmm ∧∨ ~ . Aplicando-se Lei de De Morgan à proposição entre parênteses, vem: lmm ~~ ∨∨ . Que é uma tautologia. II. Seja a proposição dada em linguagem simbólica: :q o café está quente; :d o bolo está delicioso. A proposição composta, em linguagem simbólica é: ( ) ( )dqdq ∧↔∨ ~~ observe o leitor que o primeiro parênteses traz um “ou exclusivo”, que só será verdadeira quando apenas uma de suas proposições for verdadeira. No segundo parênteses, tem-se uma proposição conjuntiva (“e”), que somente terá resultado lógico verdadeiro quando as duas proposições simples forem verdadeiras. Ora, a proposição composta bicondicional somente apresenta valor lógico verdadeiro quando suas
  19. 19. Prof. Milton Araújo cursoanpad@gmail.com19 proposições tiverem mesmo valor lógico. Analisando-se o caso de ambas as proposições simples serem falsas, ter-se-á que a proposição com o “ou exclusivo” será falsa e a proposição conjuntiva (“e”) também será falsa. desse modo, a proposição bicondicional terá resultado lógico verdadeiro. Tem-se aqui, portanto, uma contingência. Confirmação por Tabela-Verdade: q d q~ d~ dq ~~ ∨ dq ∧ ( ) ( )dqdq ∧↔∨ ~~ V V F F F V F V F F V V F F F V V F V F F F F V V F F V Resposta: não há alternativa que responda corretamente a questão. A questão deveria ter sido anulada, mas a banca não o fez! 4) Considere o anúncio a seguir: “Todo governo democrata é para o povo e um governo que é para o povo é duradouro. Agora, nenhum governo é duradouro.” Pode-se afirmar que a) o Brasil nunca teve um governo duradouro. b) o Brasil nunca teve um governo trabalhista. c) o Brasil nunca teve governo. d) os governos não são democratas. e) existem governos que não são para o povo. Solução: Sejam os diagramas: G : governo Gd : governo democrático P : povo D : duradouro. Com as premissas, pode-se determinar a figura a seguir Uma possível conclusão é: Alguns governos não são para o povo. Veja a região sombreada na figura acima. Resposta: letra e. 5) Sejam os enunciados ditos por José I. A cor azul é a mais bonita. II. O enunciado III é verdadeiro. III. Dentre as cores primárias, uma é a mais bonita. IV. As cores amarela e vermelha são as mais bonitas. V. A cor verde não é a mais bonita. VI. Somente uma das afirmações que fiz anteriormente é falsa. Sabendo que o enunciado VI é verdadeiro, pode-se concluir que o valor verdade (V, se verdadeiro; F, se falso) dos enunciados I a V é, respectivamente, a) V, V, V, V, F. b) V, V, V, F, V c) V, V, F, V, V d) V, F, V, V, V e) F, V, V, V, V Solução: O melhor modo de se analisar a questão é buscar afirmações contraditórias. Verifica-se, facilmente, que as afirmações III e IV estão em contradição. Arbitra-se o valor falso a uma delas, analisando-se as demais. Supondo-se que a afirmação III seja falsa, verifica-se que a afirmação I também será falsa. Ora, o enunciado indica apenas uma afirmação falsa. Então esta afirmação só
  20. 20. Prof. Milton Araújo cursoanpad@gmail.com20 poderá ser a IV. O leitor poderá fazer a verificação das demais afirmações, confirmando que serão todas verdadeiras. Resposta: letra b. 6) A empresa Estatix está realizando uma pesquisa nas escolas de certa região. As escolas terão avaliações favoráveis se as duas regras a seguir forem satisfeitas. Regra 1: Se a escola possui alguns professores estudiosos, a escola é recomendada. Regra 2: A escola será recomendada se o diretor for competente ou se a biblioteca for suficiente. Realizada a pesquisa na Escola XYZ, obtiveram-se as seguintes conclusões: • Os alunos não são estudiosos. • Os professores são estudiosos. • O diretor é competente. • A biblioteca é insuficiente. Baseando-se nos dados acima, pode-s concluir que a Escola XYZ a) não terá avaliação favorável, pois a biblioteca é insuficiente. b) não terá avaliação favorável, pois os alunos não são estudiosos. c) terá avaliação favorável, pois o diretor não é competente. d) terá avaliação favorável, pois os professores são estudiosos e o diretor é competente. e) terá avaliação favorável, pois a biblioteca é suficiente. Solução: As regras indicadas na questão não passam de premissas de um argumento lógico. Colocando as proposições em linguagem simbólica: :p alguns professores estudiosos; :r escola recomendada; :d diretor competente; :b biblioteca suficiente. Argumento em linguagem simbólica: Condição de validade :1 P rp → V :2 P ( ) rbd →∨ V :C ? V Com o resultado da pesquisa indicado na questão, verifica-se que a proposição p é verdadeira, assim como a proposição d .Já a proposição b é falsa. Colocando-se esses valores lógicos no quadro acima, verifica-se, em ambas as premissas, que o valor lógico da proposição r deve ser verdadeiro para que se verifique a condição de validade do argumento. Desse modo, a escola terá avaliação favorável, uma vez que tem professores estudiosos e diretor competente. Resposta: letra d. 7) Descobriu-se uma espécie de bactéria imortal que, a partir do momento de sua hospedagem e/ou existência, começa seu ciclo reprodutivo infinito e ininterrupto. Sabe-se que dois exemplares dessa espécie de bactéria geram seis exemplares em apenas 5 segundos, totalizando assim oito exemplares em 5 segundos. Com esses dados, se tivéssemos agora dez exemplares da referida bactéria, quantos exemplares teríamos daqui a 10 segundos? a) 420 b) 160 c) 120 d) 50 e) 40 Solução: A partir do número inicial de bactérias, cada novo número gerado é o quádruplo do anterior a cada intervalo de 5 segundos. Se o número inicial é de 10 bactérias, então, 5 segundos depois haverá o quádruplo desse número, ou seja, 40 bactérias. Nos próximos 5 segundos, haverá o quádruplo de 40, ou seja, 160 bactérias. Resposta: letra b. 8) O argumento que NÃO é válido é a) O céu é azul e a terra é amarela. Logo, a terra é amarela.
  21. 21. Prof. Milton Araújo cursoanpad@gmail.com21 b) Manuel é rico. Todos os homens ricos são divertidos. Logo, Manuel é divertido. c) O céu é azul ou a grama é verde. logo, a grama é verde. d) Dinheiro é tempo e tempo é dinheiro. Logo, dinheiro é tempo. e) O domingo é divertido e tudo é azul. Logo, tudo é azul. Solução: Pela definição de argumento dedutivo, é necessário que haja pelo menos duas premissas seguidas de uma conclusão válida, que deve estar baseada em todas as premissas. Observe o leitor que a questão não traz somente argumentos dedutivos. Na verdade, têm-se, nesta questão, quatro argumentos indutivos e apenas um argumento dedutivo (que é o da alternativa “b”). Em argumentos indutivos é necessário que a conclusão seja verdadeira e baseada em premissa(s) verdadeira(s). Observe o leitor que, nos argumentos dedutivos, não é necessário que uma ou mais premissas sejam verdadeiras para que o argumento seja válido Voltando aos argumentos apresentados nesta questão, veja que, nas alternativas em que a premissa é formada por uma proposição conjuntiva, esta somente será verdadeira se ambas as proposições simples tiverem valor lógico verdadeiro. Isto posto, as alternativas “a”, “d” e “e” têm conclusões válidas. A alternativa “b” é a única que traz um argumento que se encaixa na definição de argumento dedutivo. Agora, na alternativa “c” se tem uma proposição disjuntiva, que terá valor lógico verdadeiro se pelo menos uma de suas proposições simples for verdadeira. Dessa forma, a conclusão apresentada não pode ser considerada válida. Resposta: letra c. 9) Três amigos, Régis, Sílvio e Tiago, foram juntos a uma loja que vende camisetas, calças e bonés somente nas cores verde, vermelha e azul. Sabe-se que • Cada um deles comprou um boné, uma camiseta e uma calça; • Cada uma das peças compradas (bonés, ou camisetas, ou calças) tem cor diferente; • Todas as peças da mesma pessoa apresentam cores diferentes; • Régis não comprou o boné vermelho, nem a calça azul; • Sílvio comprou a camiseta azul; • Tiago comprou o boné verde. • Considerando as proposições acima, é CORRETO afirmar que a) a calça do Tiago é azul. b) a camiseta do Régis é vermelha. c) a calça do Sílvio é vermelha. d) a camiseta do Tiago é azul. e) o boné do Sílvio é azul. Solução: Com as afirmações feitas no enunciado da questão, pode-se montar o quadro abaixo: Régis Sílvio Tiago Camiseta Verde Azul Vermelha Calça Vermelha Verde Azul Boné Azul Vermelho Verde O início da colocação das cores foi com as que aparecem em destaque (negrito): a camiseta de Sílvio é azul e o boné de Tiago é verde. A partir daí as demais cores foram facilmente colocadas, observando-se, ainda de acordo com o enunciado, que nenhum deles comprou duas peças da mesma cor. Resposta: letra a. 10) Analise as seguintes definições. • Mx – x é maranhense. • Bx – x é branco. • Rx – x é rico. • Cx – x é uma casa. • Sx – x é em São Luiz. • Pxy – x possui y.
  22. 22. Prof. Milton Araújo cursoanpad@gmail.com22 Utilizando-se as definições acima, qual das seguintes alternativas pode representar a expressão “Todo maranhense branco que é rico possui uma casa em São Luiz”? a) ( )( ) ( )( )PxyCyyRxBxMxx ∧∃→∧∧∀ b) ( ) ( )( )( )PxyCyRxyRxMxx ∧∧∃→∧∀ c) ( )( ) ( )( )( )PxySyCyyRxBxMxx ∧∧∃→∧∧∀ d) ( )( ) ( )( )( )PxySyCyyRxBxMxx ∧∧∀→∧∧∀ e) ( )( ) ( )( )( )PxyRxCySyBxMxyx ∧∧→∧∧∀∀ Solução: A lógica de predicados apresenta uma convenção notacional própria para proposições categóricas,usando símbolos como ∀ , que significa “para todo” ou “qualquer que seja”, e ∃ , que significa “existe” ou “algum” ou “alguns”. Nesse tipo de questão, o candidato deverá fazer a versão da linguagem corrente para a linguagem simbólica, seguindo a convenção notacional da lógica de predicados. Desse modo, a sentença: “Todo maranhense branco que é rico possui uma casa em São Luiz”, passa a ser: ∀ x = qualquer que seja x , ou para todo x ; ∃ y = existe y A sentença dada pode ser apresentada do seguinte modo: ( )( ) ( )( )( )PxySyCyyRxBxMxx ∧∧∃→∧∧∀ Resposta: letra c. 11) Dada a proposição composta “Não é verdade que se João estiver de férias ele não vai trabalhar, então, ele está de férias e trabalhando”, pode-se afirmar que a) é uma contradição. b) é uma tautologia. c) não é tautologia e nem contradição. d) é equivalente a “se João está de férias então ele não trabalha”. e) é equivalente a “se João está de férias então ele trabalha”. Solução: Sejam as proposições simples: :f João está de férias; :t João vai trabalhar. A proposição composta “Não é verdade que se João estiver de férias ele não vai trabalhar; então ele está de férias e trabalhando” em linguagem simbólica pode ser escrita como: ( ) ( )tftf ∧→→~~ verifica-se que a primeira proposição condicional está negada, usando-se a equivalência da negação da condicional, pode-se escrever a proposição acima como: ( ) ( )tftf ∧→∧ ambos os membros da proposição condicional acima são iguais, o que caracteriza uma tautologia. Resposta: letra b. 12) Considere as proposições a seguir. P: -3 > -2 se, e somente se, 1 + 1 = 2. Q: 33 é um múltiplo de 3 se, e somente se, 3 divide 33. R: Se 2 1 < 4 1 , então 5 4 > 12 11 . Os valores lógicos (V, se verdadeiro; F, se falso) das proposições P, Q e R são, respectivamente, a) F, V, V. b) F, V, F. c) F, F, F. d) V, V, F. e) V, V, V. Solução: I. FALSA: proposição composta bicondicional na qual a primeira proposição simples é falsa e a segunda proposição simples é verdadeira.
  23. 23. Prof. Milton Araújo cursoanpad@gmail.com23 II. VERDADEIRA: proposição composta bicondicional na qual a primeira proposição simples é verdadeira e a segunda proposição simples também é verdadeira. III. VERDADEIRA: proposição composta condicional na qual a primeira proposição simples é falsa sempre terá resultado lógico verdadeiro (independentemente do valor lógico da segunda proposição simples). Resposta: letra a. 13) Considere as seguintes sentenças: I. Paulo foi Ministro da Educação. II. ( ) 0=πksen , com { }3,2,1,0∈k . III. 125 =+x . Do ponto de vista da lógica, pode-se dizer que a) I, II e III são proposições. b) I e III são proposições. c) II não é uma proposição. e) I, II e III não são proposições. e) I e III não são proposições e II é uma proposição. Solução: Do ponto de vista da lógica, uma proposição lógica é qualquer frase ou sentença declarativa, que somente pode assumir valor lógico verdadeiro ou falso. Por outro lado, uma sentença que contenha uma incógnita (elemento desconhecido) é uma sentença aberta. Paulo é um elemento desconhecido na sentença I, visto que o leitor não poderá atribuir a essa sentença um valor lógico verdadeiro ou falso, posto que desconhece o Paulo ao qual a frase faz referência. Portanto, a frase do item I é uma sentença aberta e não uma proposição lógica. A sentença II não possui qualquer incógnita, uma vez que k está definido e pode representar uma proposição lógica. A essa sentença poderá ser atribuído apenas um valor lógico verdadeiro ou falso. A sentença III é, sem dúvida, uma sentença aberta, e, portanto, não pode ser uma proposição lógica. Resposta: letra e. 14) Foi usada para codificação a frase “O Brasil é um grande campo de flores”. Qual palavra está representada no código “0216031009150405”,se o código “2404030304200105” representa a palavra “farrapos”? a) Ternuras b) Carnudas c) Permutas d) Bermudas e) Carinhas Solução: “Decodificando” a palavra “farrapos”... 24 04 03 03 04 20 01 05 f a r r a p o s A palavra codificada por: 02 16 03 10 09 15 04 05 r a s A segunda letra da palavra acima não pode ser “a” uma vez que o código da letra “a” é 04. Assim, o candidato poderá eliminar as alternativas “b” e “e”. A letra “t” não aparece na frase “O Brasil é um grande campo de flores”. Eliminem-se as alternativas “a” e “c”. Resta, portanto, a alternativa “d”. Resposta: letra d. 15) Se P é a proposição “José fez a prova” e Q é a proposição “Pedro estudou”, então a proposição composta “Não é verdade que se José não fez a prova então Pedro estudou” pode ser escrita na linguagem simbólica como a) ( )PQ ∧~~ b) ( )QP ∧~~ c) ( )QP →~ d) QP →~ e) QP ~~ ∧
  24. 24. Prof. Milton Araújo cursoanpad@gmail.com24 Solução: A proposição “Não é verdade que se José não fez a prova então Pedro estudou” pode ser escrita, em linguagem simbólica como: ( )QP →~~ A proposição acima na está entre as alternativas. Como se trata da negação da condicional, ela também pode ser escrita como: QP ~~ ∧ Resposta: letra e. 16) Sabendo que P e Q são proposições, o que NÃO se pode afirmar sobre a função valoração (v)? a) v(~P) = V se, e somente se, v(P) = F. b) v(P∧ Q) = V se, e somente se, v(P) = v(Q) = V. c) v(P∨ Q) = V se, e somente se, v(P) = V ou v(Q) = V. d) v(P→Q) = V se, e somente se, v(P) = F ou v(Q) = V e) v(P↔Q) = V se, e somente se, v(P) = v(Q) = V. Solução: Nesta questão, o candidato precisa apenas verificar a veracidade dos valores indicados em cada alternativa: a) CORRETO: significa que o valor lógico de P~ é verdadeiro se e somente se o valor lógico de P for falso. b) CORRETO: significa que o valor lógico de uma proposição conjuntiva será verdadeiro se, e somente se cada uma das proposições simples tiver valor lógico verdadeiro. c) CORRETO: significa que a proposição disjuntiva terá valor lógico verdadeiro se e somente se pelo menos uma das proposições simples tiver valor lógico verdadeiro. d) CORRETO: significa que a proposição condicional terá valor lógico verdadeiro se e somente se a primeira proposição simples for falsa ou a segunda proposição simples for verdadeira (vide tabela-verdade da proposição condicional). e) INCORRETO: a proposição composta bicondicional tem valor lógico verdadeiro sempre que ambas as proposições simples forem verdadeiras ou ambas forem falsas. Resposta: letra e. 17) Numa empresa, os funcionários Pedro, João, Antônio e Manoel trabalham como arquiteto, engenheiro, administrador e contador, não necessariamente nessa ordem. Além disto, sabe-se que • o tempo de empresa do administrador é o dobro do tempo de empresa do contador; • o tempo de empresa do arquiteto é o dobro do tempo de empresa do administrador; • o tempo de empresa do engenheiro é o dobro do tempo de empresa do arquiteto; • Manoel começou a trabalhar na empresa exatamente três anos antes de Antônio; • Pedro é mais antigo que qualquer pessoa que trabalha na empresa há mais tempo que João; • o tempo de empresa de Pedro não é o dobro do tempo de empresa de João. Considerando o tempo de serviço de todos os quatro como números inteiros, uma das conclusões possíveis é que a) Manoel é arquiteto, Antônio é contador, Pedro é engenheiro e João é administrador. b) Manoel é engenheiro, Antônio é contador, Pedro é arquiteto e João é administrador. c) Manoel é administrador, Antônio é contador, Pedro é engenheiro e João é arquiteto. d) Manoel é contador, Antônio é arquiteto, Pedro é administrador e João é engenheiro. e) Manoel é arquiteto, Antônio é engenheiro, Pedro é contador e João é administrador. Solução: Sejam: Ad advogados, Ct contadores, Ar arquitetos, En engenheiros; e M = Manoel; A = Antônio; J = João; P = Pedro e X = qualquer pessoa mais antiga que João na empresa. Assim, podemos escrever: Ad = 2Ct ; Ar = 2 Ad ; En = 2 Ar ; M = A + 3; P > ( X > J ); P ≠ 2 J Para facilitar a resolução da questão, vamos “arbitrar” o tempo de empresa do contador: Ct = 1. então: Ad = 2; Ar = 4; En = 8.
  25. 25. Prof. Milton Araújo cursoanpad@gmail.com25 Observe que Ar = Ct + 3. Então Manoel é arquiteto e Antônio é contador. Além disso, En ≠ 2 Ad . Então Pedro é engenheiro e João é administrador. Resposta: letra a. 18) Observe a seqüência 121112 = , 321.121112 = , 321.234.1111.1 2 = . Qual o valor de 2 111.11 ? a) 121.131.141 b) 121.345.321 c) 123.444.321 d) 123.454.321 e) 123.451.234 Solução: Seguindo a formação apresentada nos exemplos, o candidato poderá facilmente identificar a resposta correta. Resposta: letra d. 19) Sejam as notações predicativas. Px: x é Presidente do Brasil. Dx: x é democrata. A proposição composta “O Presidente do Brasil não é democrata” pode ser representada na linguagem simbólica por a) ( )( )( )DxyxPyyPxx ~∧=→∀→∀ b) ( )( )( )DxyxPyyPxx ~∧=→∃→∀ c) ( )( )( )DxyxPyyPxx ~∧=→∃→∃ d) ( )( )( )DxyxPyyPxx ~∧=→∀→∃ e) ( )DxPxx ~→∃ Solução: A lógica de predicados apresenta convenção notacional para proposições categóricas, através de símbolos como ∀ , que significa “para todo” ou “qualquer que seja”, e ∃ , que significa “existe” ou “algum” ou “alguns”. Nesse tipo de questão, o candidato deverá fazer a versão da linguagem corrente para a linguagem simbólica, seguindo a convenção notacional da lógica de predicados. Desse modo, a sentença: “O Presidente do Brasil não é democrata”, deve ser escrita, em linguagem simbólica, como: Existe um sujeito x e se x é Presidente do Brasil então para qualquer sujeito y , tal que se y é Presidente do Brasil, então x e y são a mesma pessoa e ela não é democrata. Em linguagem simbólica, tem-se: ( )( )( )DxyxPyyPxx ~∧=→∀→∃ Resposta: letra d. 20) Considere as regras do cálculo proposicional e suas derivações, qual das proposições abaixo pode ser derivada das proposições: “ RE ~→ ” e “ AE ~~ → ”? a) RA ∧ b) ( )RA ∧~ c) RA → d) AR →~ e) ( )RA →~ Solução: Da primeira proposição condicional vem: ERRE ~~ →⇔→ (contrapositiva). Acrescentando-se a segunda proposição condicional: AE ~~ → , chega-se a: AR ~→ (por silogismo hipotético). A proposição AR ~→ é equivalente a ( )AR ∧~ Resposta: letra b.
  26. 26. Prof. Milton Araújo cursoanpad@gmail.com26 1) Considere a seguinte seqüência da esquerda para a direita: Dentre as alternativas abaixo, o próximo elemento que obedece à regra de formação até então seguida é a) b) c) d) e) Solução: As figuras internas giram no sentido anti-horário. Ao mesmo tempo, as figuras externas giram no sentido horário. A figura que completa a seqüência é idêntica à primeira. Resposta: letra d. 2) Algumas pessoas de uma mesma família estão reunidas e entre elas existem as seguintes relações de parentesco: pai, mãe, filho, filha, irmão, irmã, primo, prima, sobrinho, sobrinha, tio e tia. Considerando-se que todos têm um antepassado em comum e que não há casamento consangüíneo entre eles, o número mínimo necessário de pessoas para a ocorrência de todas essas relações é a) 4 b) 5 c) 6 d) 7 e) 8 Solução: Resposta: letra a. 3) Considerando-se a proposição :p “Se Rui é bom poeta, então Jorge é atleta”, é CORRETO afirmar que a) a contrapositiva de p é “Se Rui não é bom poeta, então Jorge não é atleta”. b) a contrapositiva de p é “Se Jorge não é atleta, então Rui não é bom poeta”. c) a contrapositiva de p é “Se Jorge é atleta”, então Rui é bom poeta”. d) a recíproca de p é “Se Rui não é bom poeta, então Jorge não é atleta”. e) a recíproca de p é “Se Jorge não é atleta, então Rui não é bom poeta”. Solução: A expressão “é correto afirmar que” significa “é equivalente a”. A equivalente natural de uma proposição condicional é a sua contrapositiva. A contrapositiva de “Se Rui é bom poeta então Jorge é atleta” é: “Se Jorge não é atleta, então Rui não é bom poeta” Resposta: letra b. 4) Em uma bombonière há 13 bombons, cada qual recheado com apenas um dos sabores: avelã, cereja, damasco ou morango. Sabe-se que existe pelo menos um bombom de cada recheio e que suas quantidades são diferentes. Os bombons recheados com avelã ou cereja somam 4 bombons, enquanto que os recheados com avelã ou morango totalizam 5. Considerando-se essas informações, uma das possíveis alternativas é que somente
  27. 27. Prof. Milton Araújo cursoanpad@gmail.com27 a) 2 bombons sejam de avelã. b) 2 bombons sejam de cereja. c) 3 bombons sejam de damasco. d) 4 bombons sejam de damasco. e) 4 bombons sejam de morango. Solução: 13=+++ MDCA 5 4 =+ =+ MA CA Sabe-se ainda que: 1≥A , 1≥C , 1≥D , 1≥M Das equações acima, podemos escrever: 8 9 =+ =+ DC MD E ainda: 4≠A ; 5≠A ; 4≠C ; 5≠M ; 4≠D 3≤A ; 3≤C ; 4≤M ; 5≤D Com os resultados obtidos acima, conclui-se que a única alternativa correta é a da letra e. Resposta: letra e. 5) Considere os seguintes argumentos: I. Todas as aves são carnívoras. Existem peixes que são carnívoros. Logo, existem peixes que são aves. II. Todos os minerais são aves. Existem borboletas que são minerais. Logo, existem borboletas que são aves. III. O assassino é o chofer ou Lea é pretensiosa. Ora, Lea não é pretensiosa. Logo, o assassino é o chofer. A seqüência CORRETA quanto à validade dos argumentos I, II e III é, respectivamente, a) não-válido, válido, válido. b) não-válido, válido, não-válido. c) não-válido, não-válido, não-válido. d) válido, válido, não-válido. e) válido, válido, válido. Solução: Argumento I (categórico): Sejam os diagramas A : aves, C : carnívoros, P : peixes Colocando-se as premissas em forma de diagramas, tem-se: Situação 1: Situação 2: Nesta situação, o conjunto P não interage com o conjunto A . A conclusão do argumento deveria ser: “Não se pode tirar conclusão” Nesta situação, o conjunto P pode interagir com o conjunto A (ver a parte hachurada no diagrama). A conclusão do argumento seria: “As aves que são peixes, são carnívoras”. O argumento I é não-válido.
  28. 28. Prof. Milton Araújo cursoanpad@gmail.com28 Argumento II (categórico): Sejam os diagramas: M : minerais, A : aves, B : borboletas Neste caso, da premissa 2, já se sabe que há borboletas que são minerais (ver região hachurada na figura acima). A conclusão do argumento é: “Existem borboletas que são aves”. O argumento II é válido. Argumento III: Este argumento é baseado em proposições lógicas. Sejam as proposições (em linguagem simbólica): :c o chofer é o assassino. :p Lea é pretensiosa. Escrevendo-se o argumento em linguagem simbólica: Condição de validade :1 P pc ∨ V :2 P p~ V :C c V Partindo-se da premissa mais simples ( 2 P ), tem-se que p~ deve ser verdadeira. Desse modo, na premissa 1 ( 1 P ), a proposição p será falsa. Para que a premissa 1 seja verdadeira (a fim de satisfazer a condição de validade), a proposição c , deve ser, necessariamente, verdadeira. Desse modo, está validado o argumento. Resposta: letra a. 6) Paulo possui 5 pares de meias, todos de cores diferentes. Para garantir que pegou um par de mesma cor, ele precisa apanhar no mínimo a) 2 meias b) 5 meias c) 6 meias d) 9 meias e) 10 meias Solução: Para que Paulo consiga a garantia de retirar um ar da mesma cor, ele necessitará retirar no mínimo 6 meias. Resposta: letra c. 7) A negação da proposição “Se João é jogador de basquete, então ele é bonito”, é: a) “Se João não é jogador de basquete, então ele não é bonito”. b) “Se João não é bonito, então ele não é jogador de basquete”. c) “João não é jogador de basquete ou ele é bonito”. d) “João é jogador de basquete ou ele não é bonito”. e) “João é jogador de basquete e ele não é bonito”. Solução: Na negação da proposição condicional, recorre-se à equivalência: ( )qpqp ~~ ∧⇔→ cuja negação pode ser escrita como: ( ) ( )qpqp ~~ ∧⇔→
  29. 29. Prof. Milton Araújo cursoanpad@gmail.com29 Do segundo membro da equivalência acima, em linguagem corrente, tem-se a forma mais comum da negação da proposição condicional. Para a questão proposta, a negação fica assim: “João é jogador de basquete e não é bonito” Resposta: letra e. 8) As primas Branca, Celeste e Rosa foram almoçar na casa da avó e notaram que estavam com calçados das cores branca, celeste e rosa. Então, Branca disse: “as cores dos calçados combinam com nossos nomes, mas nenhuma está com o calçado da cor que combine com seu próprio nome”. “E daí?”, respondeu a jovem com o calçado rosa. Com essas informações, pode-se afirmar que a) Branca está com calçado rosa. b) Celeste está com calçado rosa. c) Rosa está com calçado celeste. d) Celeste está com calçado branco e Rosa está com calçado celeste. e) Branca está com calçado celeste e Celeste está com calçado branco. Solução: A questão tem solução bastante simples: (1) Branca só poderia estar com o calçado celeste ou rosa; (2) A prima que retrucou sua afirmação é quem está com o calçado rosa, e seu nome não é Rosa. Desse modo, conclui-se que: Branca está com o calçado celeste; Celeste está com o calçado rosa e Rosa está com o calçado branco. Resposta: letra b. 9) Fábia, Júlia e Mariana saíram com os seus namorados para passear de moto. Em certo momento, elas trocaram entre si as motos e os acompanhantes. Cada uma está na moto de uma segunda e com o namorado de uma terceira. A pessoa que está na moto de Fábia está com o namorado de Júlia. Nessas condições, pode-se afirmar que a) Mariana está com o namorado de Fábia. b) Fábia está com o namorado de Júlia. c) Júlia está com o namorado de Fábia. d) Mariana está com a moto de Júlia. e) Júlia está com a moto de Fábia. Solução: Como nenhuma das moças está com sua moto e seu namorado, então, quem está com a moto de Fábia e com o namorado de Júlia só pode ser Mariana. Desse modo, podemos completar, facilmente, o quadro abaixo: Fábia Júlia Mariana Moto Júlia Mariana Fábia Namorado Mariana Fábia Júlia Com o quadro acima, pode-se, agora, selecionar a alternativa correta. Resposta: letra c. 10) De 7 pacotes de biscoitos de mesmo tipo e aparentemente iguais, há 2 pacotes com o mesmo peso e que pesam menos que os demais, cujo peso é idêntico. Para aferir a diferença entre os pesos desses pacotes foi utilizada uma balança de dois pratos, sem pesos. Quantas pesagens, no mínimo, são necessárias para garantir quais são os pacotes mais leves? a) 2 b) 3 c) 4 d) 5 e) 6 Solução: Colocam-se 3 pacotes em cada prato da balança, deixando-se um pacote fora da balança. Se houver desequilíbrio na balança, sabe-se que pelo menos um dos pacotes mais leves estará no prato que ficar mais alto. Se, inicialmente, apenas um dos pacotes mais leves foi colocado na balança, saber-se-á que o outro é o que ficou fora da balança. Retiram-se, então, os pacotes deste prato (o que ficou mais alto) e coloca-se um pacote em cada prato. Se houver novo desequilíbrio, encontrou-se o outro pacote mais leve. Desse modo, ter-se-á encontrado os dois pacotes mais leves com apenas duas pesagens.
  30. 30. Prof. Milton Araújo cursoanpad@gmail.com30 Resposta: letra a. 11) Sejam as proposições: :p “Bruna foi ao cinema”. :q “Caio foi jogar tênis”. A proposição composta “Caio foi jogar tênis ou Bruna não foi ao cinema” pode ser escrita na linguagem simbólica como a) ( )qp ~~~ ∧ b) ( )qp ∨~~ c) ( )qp ~~ ∨ d) ( )qp ∧~~ e) ( )qp ~~ ∧ Solução: Em linguagem simbólica, a proposição dada é escrita como pq ~∨ . Obviamente, esta proposição não estará entre as alternativas. O candidato precisa se lembrar das propriedades das proposições lógicas, principalmente, Leis de De Morgan e da propriedade comutativa, empregadas nesta questão. Aplicando-se Lei de De Morgan, vem: ( )pq ∧~~ . Aplicando-se, agora, a propriedade comutativa na proposição composta entre parênteses, vem: ( )qp ~~ ∧ Resposta: letra e. 12) Antônio distribuiu 25 pirulitos inteiros para seus 7 filhos. Sabendo que cada filho recebeu pelo menos um pirulito, pode-se afirmar que a) pelo menos um filho recebeu exatamente 4 pirulitos. b) cinco filhos receberam exatamente 4 pirulitos cada um. c) todos os filhos receberam a mesma quantidade de pirulitos. d) pelo menos dois filhos receberam o mesmo número de pirulitos. e) quatro filhos receberam 4 pirulitos e outros receberam 3 pirulitos cada um. Solução: Se, inicialmente, Antônio der um pirulito a cada filho e todos os 18 restantes para um deles, ou ainda, se redistribuir os 18 restantes de qualquer forma que escolher, sempre haverá pelo menos dois filhos que receberão a mesma quantidade de pirulitos. Resposta: letra d. 13) Seja a proposição “Se Davi pratica natação, então Nair joga vôlei”. Uma proposição equivalente pode ser dada por a) “Davi pratica natação e Nair joga vôlei”. b) “Davi não pratica natação ou Nair joga vôlei”. c) “Se Nair joga vôlei, então Davi pratica natação”. d) “Davi não pratica natação e Nair não joga vôlei”. e) “Se Davi não pratica natação, então Nair não joga vôlei”. Solução: Uma equivalência da proposição condicional é: ( )qpqp ~~ ∧⇔→ . Aplicando-se Lei de De Morgan no segundo membro da equivalência acima, vem: qpqp ∨⇔→ ~ . Passando-se a proposição para a linguagem corrente, tem-se: “Davi não pratica natação ou Nair joga vôlei”. Resposta: letra b. 14) Lauro, Moisés e Nelson – cujos sobrenomes são Ramos, Souza e Teixeira, mas não necessariamente nessa ordem – resolveram cada um, fazer uma obra diferente de reforma – fachada, jardim, piscina – em suas casas. Sabe-se que: • Souza não fez obra na fachada nem no jardim; • Lauro e Moisés são os vizinhos de Ramos; • Lauro fez obra na piscina e Teixeira não modificou o jardim. Então, pode-se afirmar que a) Lauro Ramos reformou o jardim. b) Moisés Souza reformou a piscina.
  31. 31. Prof. Milton Araújo cursoanpad@gmail.com31 c) Moisés Teixeira reformou a fachada. d) Nelson Souza reformou a piscina.. e) Nelson Teixeira reformou a fachada. Solução: Com as informações dadas, pode-se completar o quadro abaixo. Lauro Nelson Moisés Sobrenome Souza Ramos Teixeira Reforma Piscina Jardim Fachada Resposta: letra c. 15) Numa sala de aula que conta com 48 alunos, 30 usam calças jeans e 13 usam tênis. Se 12 alunos não usam calças jeans nem tênis, o número de alunos que usam calças jeans e não usam tênis é a) 5 b) 17 c) 18 d) 23 e) 30 Solução: Se 12 alunos não usam calças jeans nem tênis, então os outros 36 usam calças jeans ou tênis. Ora, segundo o enunciado, a soma dos que usam calças jeans (30) com os que usam tênis (13) é 43. Isto significa que 7 alunos estão na interseção dos dois conjuntos (ver diagrama). Desse modo, há 23 alunos que somente usam calças jeans (mas não estão de tênis) e 6 alunos que usam tênis (mas não estão de calças jeans). Resposta: letra d. 16) Considere as seguintes proposições: :p -3 + 5 = -2 se, e somente se, 2 + 2 = 4. :q 4 é par se, e somente se, um cachorro é um mamífero. :r Se 3121 < , então 3 > 2. Então, os valores lógicos das proposições p , q e r são, respectivamente, a) F V V b) F V F c) F F F d) V V F e) V V V Solução: A primeira proposição composta dada acima é bicondicional e sua primeira proposição simples é falsa (-3 + 5 = 2; e não -2). A segunda proposição simples é verdadeira: 2 + 2 = 4, logo, a proposição bicondicional tem valor lógico falso. A segunda proposição também é bicondicional, e, a exemplo da primeira, também tem suas proposições simples com o mesmo valor lógico (ambas são verdadeiras: 4 é par e cachorro é mamífero). Desse modo, a proposição bicondicional é verdadeira. A terceira proposição é condicional. Quando a primeira proposição simples de uma condicional é falsa, o valor lógico da proposição condicional é verdadeiro, independente do valor lógico da segunda proposição simples. Resposta: letra a. 17) A negação da proposição “Nenhuma fruta não é doce” pode ser a) “Nenhuma fruta é doce”. b) “Todas as frutas são doces”. c) “Existem frutas que são doces”. d) “Todas as frutas não são doces”. e) “Existem frutas que não são doces”. Solução: A negação da proposição categórica “nenhum...” é “algum...”. Então, tem-se: “Alguma fruta não é doce”. Lembre-se de que algum(ns) é o mesmo que existe(m). Resposta: letra e. 18) Cinco amigos, André, Celso, Daniel, Hugo e Mário, prestam exame de seleção para a Aeronáutica. Sabe-se que, se André estudou, Celso foi aprovado; se Daniel foi aprovado, André
  32. 32. Prof. Milton Araújo cursoanpad@gmail.com32 estudou; se Hugo não estudou, Mário também não o fez; se Hugo estudou,Daniel foi aprovado. Como Mário estudou, a) Daniel não foi aprovado. b) Hugo não foi aprovado. c) Mário foi aprovado. d) André foi aprovado. e) Celso foi aprovado. Solução: A questão é um argumento. Sejam as proposições simples: :Ae André estudou; :Ca Celso aprovado; :Da Daniel aprovado; :He Hugo estudou; :Me Mário estudou. Colocando-se o em linguagem simbólica: Condição de validade :1 P CaAe → V :2 P AeDa → V :3 P MeHe ~~ → V :4 P DaHe → V :5 P Me V :C ? V Partindo-se da premissa 5, tem-se que é verdade que Mário estudou. Assim, na premissa 3, a proposição Me~ é falsa. Desse modo, He~ também deverá ser falsa, para que a proposição condicional seja verdadeira, satisfazendo a condição de validade. Sabendo-se que He~ é falsa, tem-se que, na premissa 4, He é verdadeira. Como a premissa 4 é uma proposição condicional, esta somente será verdadeira se Da for verdadeira. Com isso, na premissa 2, sabendo-se que Da é verdadeira, então Ae também deve ser, para satisfazer a condição de validade. Ora, se Ae é verdadeira, então na premissa 1 Ca também precisa ser verdadeira. A conclusão do argumento é, portanto, “André estudou e Celso foi aprovado e Daniel foi aprovado e Hugo estudou”. Resposta: letra e. 19) Seja a proposição :p “Todos os filósofos são calvos”. A proposição que NÃO é equivalente a p é a) “Os filósofos são calvos”. b) “Qualquer filósofo é calvo”. c) “Nenhum filósofo não é calvo”. d) “Se alguém é calvo, então ele é filósofo”. e) “Se alguém não é calvo, então não é filósofo”. Solução: A proposição dada também pode ser escrita como: “Se alguém é filósofo, então ele é calvo”. Das alternativas dadas, vem: (a) “Os filósofos são calvos”. É equivalente. b) “Qualquer filósofo é calvo”. É equivalente (a proposição categórica “todo” é sinônimo de “qualquer que seja” c) “Nenhum filósofo não é calvo”. É equivalente: “nenhum... não é...” é o mesmo que “todos... são...”. d) “Se alguém é calvo, então ele é filósofo”. É a recíproca. Sabe-se que a recíproca de uma proposição condicional nem sempre é verdadeira.
  33. 33. Prof. Milton Araújo cursoanpad@gmail.com33 e) “Se alguém não é calvo, então não é filósofo”. É a contrapositiva. Sabe-se que a recíproca de uma proposição condicional é equivalente à proposição dada (teorema contra-recíproco). Resposta: letra d. 20) Em 8 horas, uma colônia que começou com 4 bactérias multiplica-se e preenche o espaço reservado para sua cultura. Se o número de indivíduos dessa espécie duplica a cada hora, começando-se com apenas uma bactéria, o mesmo espaço será preenchido em a) 10 horas b) 12 horas c) 16 horas d) 24 horas e) 32 horas Solução: Começando-se com uma bactéria, tem-se, hora depois, duas bactérias. Duas horas depois, tem-se 4 bactérias e assim sucessivamente. Observe o leitor que a segunda cultura está defasada de duas horas em relação à primeira (ver quadro abaixo). Desse modo, a segunda cultura preencherá seu espaço em 10 horas. Hora→ 0 1 2 3 4 5 6 7 8 9 10 Cultura 1 4 8 16 32 64 128 256 512 1024   Cultura 2 1 2 4 8 16 32 64 128 256 512 1024 Resposta: letra a.
  34. 34. Prof. Milton Araújo cursoanpad@gmail.com34 INSTRUÇÃO: As questões 1, 2 e 3 deverão ser respondidas tendo como base as afirmativas abaixo. I. Há um mês, cinco amigos, Aline, Juliana, Lia, Mário e Sílvio estão fazendo dieta para perder peso, e os pesos perdidos são dados em números inteiros. II. Aline perdeu 1 kg a mais que Mário. III. Mário perdeu 2 kg a mais que Juliana. IV. Juliana perdeu 1 kg a menos que Sílvio. V. Lia perdeu 2 kg a menos que Juliana . 1) Das alternativas abaixo, a que indica os nomes em ordem decrescente de perda de peso no período é a) Mário, Juliana, Aline, Lia, Sílvio. b) Aline, Mário, Juliana, Sílvio, Lia. c) Aline, Mário, Sílvio, Lia, Juliana. d) Sílvio, Lia, Mário, Juliana, Aline. e) Aline, Mário, Sílvio, Juliana, Lia. Solução: Com as instruções dadas, podem-se escrever as seguintes equações: 2 1 2 1 −= −= += += JL SJ JM MA Para resolver a questão de modo mais rápido, o candidato poderá “arbitrar” uma das quantidades. Melhor, ainda, seria usar o enunciado da questão 2 e colocar 7=L . Então, 9=J ; 10=S ; 11=M ; 12=A Resposta: letra e. 2) Se Lia perdeu 7 kg, nesse intervalo, então Mário perdeu a) 8 kg b) 9 kg c) 10 kg d) 11 kg e) 12 kg Solução: A resposta já foi encontrada na questão 1. Mário perdeu 11 kg. Resposta: letra d. 3) Considere as seguintes afirmações: I. A soma dos pesos que Aline e Lia perderam juntas é igual à soma dos pesos perdidos por Sílvio e Juliana juntos. II. A soma dos pesos que Mário e Sílvio perderam é um número ímpar. III. Lia perdeu 2 kg a menos que Sílvio. Assim, pode-se afirmar que é(são) VERDADEIRA(S) a) apenas a I b) apenas a II c) apenas a III d) apenas a I e II e) apenas a I e III Solução: I. CORRETO! 19712 =+=+ LA e 19910 =+=+ JS II. CORRETO! 211011 =+=+ SM III. INCORRETO! Se 7=L e 10=S , então Lia perdeu 3 kg a menos que Sílvio. Resposta: letra d. 4) Num grupo de pessoas, detectou-se que 19 são fumantes, 37 tomam café e todos os fumantes tomam café. Oito pessoas não têm apetite porque fumam e outras duas porque só tomam café. O número de pessoas não-fumantes, consumidoras de café e que têm apetite é a) 8 b) 16 c) 18 d) 21 e) 37 Solução:
  35. 35. Prof. Milton Araújo cursoanpad@gmail.com35 No diagrama a seguir F indica o conjunto dos fumantes, C é o conjunto das pessoas que tomam café, A identifica a parte das que têm apetite e A representa o grupo das que não têm apetite. Resposta: letra b. 5) Uma proposição equivalente a “Se Tadeu é economista, então Renato não é estudioso” é a) “Se Renato é estudioso, então Tadeu não é economista”. b) “Se Renato é estudioso, então Tadeu é economista”. c) Se Tadeu não é economista, então Renato é estudioso”. d) “Tadeu é economista ou Renato é estudioso”. e) “Tadeu é economista ou Renato não é estudioso”. Solução: Uma equivalente de uma proposição condicional é a sua contrapositiva: “Se Renato é estudioso, então Tadeu não é economista”. Resposta: letra a. 6) Considere { }042; =+ℜ∈= xxA e as seguintes proposições: I. Se o Estado de Rio de Janeiro está na Região Sul, então { }2 1 −=A . II. Se o Estado de Rio de Janeiro está na Região Sudeste, então { }2−=A . III. Se o Estado de Rio de Janeiro está na Região Sudeste, então { }6−=A . IV. Se o Estado de Rio de Janeiro está na Região Sul, então { }2−=A . A seqüência formada pelo valor verdade (V, se verdade; F, se falso) dessas proposições é, a) F V V V b) F V F F c) V V F V d) V F F F e) V V V V Solução: Ver tabela-verdade da proposição condicional. A solução de 042 =+x é 2−=x O Estado do Rio de Janeiro está na região Sudeste. I. Proposição condicional VERDADEIRA; II. Proposição condicional VERDADEIRA; III. Proposição condicional FALSA; IV. Proposição condicional VERDADEIRA. Resposta: letra c. 7) Fábio e Gerson estão numa embarcação que se dirige de uma ilha para a praia. Durante o trajeto, eles resolvem fazer uma parte do percurso nadando. Fábio deixa a embarcação na metade do tempo total gasto por ele e nada durante a outra metade, enquanto Gerson deixa a embarcação na metade da distância, nadando o restante do percurso. Eles nadam à mesma velocidade constante e esta é menor do que a velocidade constante da embarcação. Nessas condições, é CORRETO afirmar que a) Fábio e Gerson chegarão juntos à praia. b) Fábio chegará primeiro à praia. c) Gerson chegará primeiro à praia. d) Fábio ultrapassará Gerson em algum ponto do percurso a nado. e) não se pode concluir quem chegará primeiro à praia.
  36. 36. Prof. Milton Araújo cursoanpad@gmail.com36 Solução: Como a velocidade do barco é maior do que a velocidade em que ambos conseguem nadar, segue- se que aquele que ficar mais tempo no barco chegará antes à praia. Desse modo, Fábio chegará antes à praia. Resposta: letra b. 8) A negação da proposição “Vera vai ao cinema ou à festa” é a) “Vera vai ao cinema ou não vai à festa”. b) “Vera não vai ao cinema ou não vai à festa”. c) “Vera vai ao cinema e à festa”. d) “Vera não vai ao cinema e vai à festa”. e) “Vera não vai ao cinema e não vai à festa”. Solução: Para a negação de uma proposição disjuntiva, aplica-se De Morgan à proposição. Neste caso, tem- se: “Vera não vai ao cinema e não vai à festa”. Resposta: letra e. 9) Se x e y são inteiros com yx < , definimos yx ⊕ como sendo a soma dos inteiros entre x e y , incluindo x e y . Por exemplo, 3410987107 =+++=⊕ . O valor numérico de 53 1410 ⊕ ⊕ é a) 2 b) 3 c) 5 d) 7 e) 12 Solução: Usando-se a definição dada no enunciado, tem-se: 5 543 1413121110 53 1410 = ++ ++++ = ⊕ ⊕ Resposta: letra c. 10) Sabe-se que Nei tem um filho a menos que seu irmão Paulo; este, por sua vez, tem um filho a menos que Raul. Se Raul tem o dobro de filhos que Nei, então os três irmãos, Nei, Paulo e Raul, têm, em conjunto, a) 6 filhos b) 7 filhos c) 8 filhos d) 9 filhos e) 10 filhos Solução: Montando-se equações: NR RP PN 2 1 1 = −= −= Deve-se calcular RPN ++ . O sistema acima é de fácil solução: 2 22 12 = −= −= N NN NP Assim: 3=P e 4=R , e: 9=++ RPN Resposta: letra d. 11) A negação da proposição “Todas as máquinas não são eficientes” é a) “Nenhuma máquina é eficiente”. b) “Todas as máquinas são eficientes”. c) “Existe máquina que é eficiente”. d) “Existe máquina que não é eficiente”. e) “Não é verdade que todas as máquinas são eficientes”. Solução: A negação da proposição categórica Todo é: Algum não é... ou Existe um... que não é... Resposta: letra c.
  37. 37. Prof. Milton Araújo cursoanpad@gmail.com37 12) o número 1234567812345678...12345678 possui 80 dígitos formado pela repetição da seqüência de algarismos 12345678. Dividindo-se esse número por 9, obtém-se como resto o número a) 0 b) 3 c) 5 d) 6 e) 8 Solução: Para que um número qualquer seja divisível por 9 é necessário que a soma de todos os seus algarismos seja um múltiplo de 9. somando-se os algarismos de uma das seqüências do número dado, tem-se 36, que é múltiplo de 9. Segue-se que o número dado é múltiplo de 9 e o resto da divisão é zero. Resposta: letra a. 13) Duas jarras contêm, cada uma, o mesmo volume de uma mistura de água e álcool, nas proporções de 2:8 na primeira jarra e de 2:3 na segunda jarra. Juntando-se os conteúdos das duas jarras, obtém-se uma mistura de água e álcool cuja proporção entre água e álcool é a) 2:5 b) 3:7 c) 3:11 d) 4:11 e) 4:24 Solução: Trata-se de um problema de proporção. Entretanto, só se podem somar as quantidades se ambas as razões tiverem o mesmo número de partes (subdivisões). Veja que a primeira razão tem 10 partes (2 partes de álcool + 8 partes de água), mas a segunda tem apenas 5 partes (2 partes de álcool + 3 partes de água). Vamos montar as razões de outra forma, para melhor visualização: 8 2 e 3 2 Para que a segunda razão fique com 10 partes, basta multiplicar ambos os membros por 2. ficaremos com: 6 4 . Pronto! Ambas as razões agora têm 10 partes. Agora, podemos somar numerador com numerador e denominador com denominador: 7 3 14 6 68 42 == + + Resposta: letra b. 14) O arranjo parcialmente representado ao lado é composto por 26 hexágonos, e foi montado com canudos de comprimento igual ao lado do hexágono. Para montar esse arranjo são necessários, no mínimo, a) 96 canudos b) 101 canudos c) 113 canudos d) 123 canudos e) 136 canudos Solução: A questão se resolve por observação: há 8 seqüências iguais (após a retirada dos 5 canudos à esquerda, na figura acima). A soma dos canudos dessas 8 seqüências é 88118 =× . A seguir, contam-se mais 13 canudos que não fazem parte da seqüência, perfazendo um total de 101 canudos. Resposta: letra b. 15) Considere os seguintes argumentos: I. Se o leão é manso, então o coelho não é branco. Como o coelho é branco, o leão não é manso. II. O anel é de aço ou a bolinha é de ferro. O anel não é de aço – logo, a bolinha não é de ferro. III. Se Denise canta, então Flávio chora. Ora, Denise não canta, logo, Flávio não chora. A atribuição de validade aos argumentos I, II e III forma, respectivamente, a seguinte seqüência: a) válido, não-válido, não-válido. b) não-válido, não-válido, não-válido. c) válido, válido, não-válido.
  38. 38. Prof. Milton Araújo cursoanpad@gmail.com38 d) não-válido, não-válido, válido. e) válido, não-válido, válido. Solução: I. Sejam as proposições: :m o leão é manso; :b o coelho é branco. Colocando-se o argumento em linguagem simbólica, vem: Condição de Validade :1 P bm ~→ V :2 P b V :C m~ V Para que o argumento seja válido, deveremos iniciar impondo que a premissa 2 (a mais simples) seja verdadeira. Desse modo, se a proposição b é verdadeira, então, na premissa 1 b~ é falsa. como a premissa 1 é uma proposição condicional, para que esta seja verdadeira, é necessário que a proposição m seja falsa. Desse modo, sendo a proposição m falsa, segue-se que a conclusão é verdadeira. Conclui-se que o argumento é válido. (Experimente usar o Modus Ponens para obter uma solução muito mais rápida!) II. Sejam as proposições: :a o anel é de aço; :f a bolinha é de ferro. Colocando-se o argumento em linguagem simbólica, vem: Condição de Validade :1 P fa ∨ V :2 P a~ V :C f~ V Novamente iniciamos pela premissa 2, pois é a mais simples. Ora, se a~ é verdadeira, então, na premissa 1, a é falsa. Mas a premissa 1 é uma proposição disjuntiva. Então a proposição f dever ser, necessariamente, verdadeira, para que a premissa 1 seja verdadeira. Observa-se que, sendo f verdadeira, tem-se que f~ é falsa, isto é, chegamos a uma conclusão falsa, o que não satisfaz a condição de validade do argumento. Assim sendo, este argumento é não-válido. III. Sejam as proposições: :d Denise canta; :f Flávio chora. Colocando-se o argumento em linguagem simbólica, vem: Condição de Validade :1 P fd → V :2 P d~ V :C f~ V Novamente iniciamos pela premissa 2, pois é a mais simples. Ora, se d~ é verdadeira, então, na premissa 1, d é falsa. Mas a premissa 1 é uma proposição condicional, que será sempre verdadeira quando a proposição antecedente tiver valor lógico falso. Dessa forma, qualquer que seja o valor lógico da proposição f , ter-se-á que a premissa 1 será verdadeira. Como não se pode determinar com exatidão o valor lógico da proposição f , não se pode validar o argumento, visto que esta proposição é a conclusão do argumento. Tem-se, portanto, um argumento não-válido. (Experimente usar o Modus Ponens para obter uma solução muito mais rápida!) Resposta: letra a. 16) A média aritmética de oito números é seis. Acrescentando-se-lhe mais um número, a nova média é sete; o número acrescentado é
  39. 39. Prof. Milton Araújo cursoanpad@gmail.com39 a) 9 b) 12 c) 14 d) 15 e) 17 Solução: Se a média aritmética de 8 números é 6, então a soma desses 8 números é 48. Para o cálculo da nova média, basta fazer: 7 9 48 = + x , logo, 15=x Resposta: letra d. 17) O retângulo da figura ao lado está dividido em 7 quadrados. Se a área do quadrado menor é igual a 1 u. a., a área do retângulo é igual a a) 40 u.a. b) 42 u.a. c) 45 u.a. d) 48 u.a. e) 50 u.a. Solução: A questão se resolve por simples observação da figura dada (ver figura abaixo). Então a área do retângulo é igual a 45 u.a. Obs. A banca indica no gabarito a alternativa “a”. A resposta da banca está incorreta. Resposta: letra c. 18) Considere as seguintes proposições: :p “Hoje é quarta-feira”. :q “Celso vai jogar boliche”. A proposição composta ( )qp ∨~~ , em linguagem corrente, é expressa pela declaração: a) “Hoje é quarta-feira e Celso não vai jogar boliche”. b) “Hoje é quarta-feira ou Celso não vai jogar boliche”. c) “Hoje não é quarta-feira e Celso vai jogar boliche”. d) “Hoje não é quarta-feira e Celso não vai jogar boliche”. e) “Hoje não é quarta-feira ou Celso não vai jogar boliche”. Solução: Inicialmente, aplica-se Lei de De Morgan à proposição dada em linguagem simbólica: ( ) qpqp ~~~ ∧⇔∨ Em linguagem corrente, a sentença acima fica: “Hoje é quarta-feira e Celso não vai jogar boliche”. Resposta: letra a. 19) A soma de sete números inteiros é ímpar. Com base nessa informação é CORRETO afirmar que a) pelo menos um desses números é ímpar. b) pelo menos um desses números é par. c) pelo menos dois desses números são ímpares. d) nenhum desses números é par. e) pelo menos dois desses números são pares. Solução: Somando-se 6 números pares, tem-se resultado par. Para que o resultado seja impar, ao se somar mais um número, é necessário que o sétimo número somado seja ímpar. Resposta: letra a. 20) As margaridas são mais baratas do que as rosas. André não tem dinheiro suficiente para comprar uma dúzia de margaridas. Logo, a) André tem dinheiro suficiente para comprar meia dúzia de margaridas.
  40. 40. Prof. Milton Araújo cursoanpad@gmail.com40 b) André tem dinheiro suficiente para comprar meia dúzia de rosas. c) André não tem dinheiro suficiente para comprar meia dúzia de rosas. d) André não tem dinheiro suficiente para comprar uma dezena de margaridas. e) André não tem dinheiro suficiente para comprar uma dúzia de rosas. Solução: Como não se pode “quantificar” os valores das margaridas e rosas, só se pode saber que, se André não pode comprar uma dúzia de margaridas, tampouco conseguirá comprar uma dúzia de rosas. Resposta: letra e.
  41. 41. Prof. Milton Araújo cursoanpad@gmail.com41 1) Considere os seguintes argumentos quanto a sua validade (legitimidade). I. Há, quando muito, um lógico incoerente. Aristóteles é um lógico incoerente. Flamarion não é Aristóteles. Portanto, Flamarion é um lógico coerente. II. Todo leão é feroz. Alguns leões não caçam. Portanto, alguns animais ferozes não caçam. III. Existem pessoas naquele bar. Todas as pessoas que estão no bar são homens. Portanto, todas as pessoas que freqüentam o bar são homens. A seqüência que corresponde à atribuição CORRETA de validade para os argumentos é a) válido, válido, válido b) inválido, inválido, inválido c) válido, inválido, válido d) válido, válido, inválido. e) inválido, válido, inválido Solução: Argumento I. Conclusão: Flamarion pode não ser lógico (ver diagrama). O argumento é não-válido. Argumento II: O argumento é válido (ver parte hachurada no diagrama acima). Argumento III: O argumento não é válido. Resposta: letra e. 2) Em uma empresa, trabalham Paulo, Sérgio e João, que são, não necessariamente nesta ordem, administrador, contador e advogado. A respeito deles, podem-se fazer as seguintes afirmações: • Paulo é administrador; • Sérgio não é administrador; • João não é advogado. Considerando-se que somente uma das afirmações acima é verdadeira, conclui-se que o contador e o administrador se chamam, respectivamente, a) Paulo e Sérgio b) Sérgio e João c) João e Sérgio d) Paulo e João e) João e Paulo.
  42. 42. Prof. Milton Araújo cursoanpad@gmail.com42 Solução: Se apenas uma das afirmações é verdadeira, inicia-se a análise considerando a primeira como verdadeira: “Paulo é administrador”. A seguir, verifica-se que, desta forma, a segunda afirmação também seria verdadeira. Ora, o enunciado afirma que apenas uma afirmação é verdadeira, logo, a consideração inicialmente feita não é válida. Então, Paulo não é administrador. Tenta-se, agora, atribuir como verdadeira a segunda afirmação: “Sérgio não é administrador”. Novamente contraria-se desta forma o enunciado, pois se já se sabe que Paulo não é administrador e Sérgio também não é administrador, então João deveria ser administrador e a afirmação “João não é advogado” seria verdadeira. Como há apenas uma afirmação verdadeira, conclui-se que a segunda afirmação é falsa; portanto “Sérgio é administrador”. Como a afirmação “João não é advogado” é a única verdadeira, então João só pode ser contador e Paulo é advogado. Resposta: letra c. 3) Os dados mostrados abaixo têm apenas duas faces com algo inscrito: a da frente e a de baixo. Todos os dados têm, numa dessas duas faces, uma “lua” ou um “coração”, mas um mesmo dado não pode ter inscritas essas duas figuras. O menor número de dados a serem virados para revelar se é verdadeira ou falsa a proposição “Se um dado tem um coração em uma das faces, então na outra há um raio” é a) 1 b) 2 c) 3 d) 4 e) 5 Solução: Da proposição condicional dada, pode-se escrever: :c uma face do dado tem um coração; :r uma face do dado tem um raio. A proposição dada, em linguagem simbólica é: rc → , cuja tabela verdade é: c r rc → V V V V F F F V V F F V Sabe-se que apenas duas faces de cada dado têm figura e que as figuras lua e coração não estarão juntas no mesmo dado, mas que, cada dado tem uma dessas duas figuras em uma de suas faces. Como se pede que a proposição: “Se um dado tem um coração em uma das faces, então na outra há um raio” seja verdadeira ou falsa, não se necessita virar os dados das extremidades, nem o dado do meio (que, neste caso já tem a primeira proposição verdadeira, e, qualquer que seja a figura da outra face, tornará a proposição condicional verdadeira ou falsa). Como os dois dados que contém um raio já colocam a proposição condicional dada na condição de verdadeira, resta- nos afirmar que não se necessitam virar nenhum dos dados para se ter a proposição condicional verdadeira ou falsa. há, portanto uma incoerência na proposição da questão, que deveria ter sido anulada! O gabarito da banca é a letra b. Resposta: letra ? 4) A figura ao lado mostra o mapa imaginário de uma cidade constituída por cinco bairros. Deseja-se colorir cada bairro com uma das cores vermelha, azul ou amarela, de maneira que, dois bairros vizinhos não possuam a mesma cor. O número de maneiras diferentes segundo as quais o mapa pode ser pintado é

×