• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Anpad junho 07_rl+rq_resolvido
 

Anpad junho 07_rl+rq_resolvido

on

  • 609 views

 

Statistics

Views

Total Views
609
Views on SlideShare
609
Embed Views
0

Actions

Likes
0
Downloads
46
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Anpad junho 07_rl+rq_resolvido Anpad junho 07_rl+rq_resolvido Document Transcript

    • Prof. Milton Araújo cursoanpad@gmail.com1 1) Considere as seguintes sentenças: I. Os gatos são pretos e os cachorros são brancos. II. Se todos os gatos são brancos, não há gatos na varanda. III. Não é verdade que os cachorros são pretos e que há gatos na varanda. Admitindo-se que todas essas sentenças sejam verdadeiras, é CORRETO afirmar que: a) Os gatos são pretos ou os cachorros são brancos. b) Não há gatos na varanda. c) Todos os gatos estão na varanda. d) Os cachorros são pretos. e) Os gatos são brancos. Solução: As três sentenças formam as premissas de um argumento lógico, para o qual se quer sua conclusão. Usando o método visto em aula, coloca-se o argumento em linguagem simbólica e retira-se, rapidamente, sua conclusão. Sejam as proposições: Pg : Os gatos são pretos; Bg : Os gatos são brancos; Pc : Os cachorros são pretos; Bc : Os cachorros são brancos; v : Há gatos na varanda. O argumento, em linguagem simbólica, fica assim: Condição de Validade I BcPg ∧ V II vBg ~→ V III ( )vPc ∧~ V C ? V A premissa I deve ser verdadeira (para conclusão verdadeira e validade do argumento). Observe que a premissa é formada por uma proposição lógica conjuntiva. Assim, os valores lógicos de Pg e Bc devem ser V. Na premissa II tem-se a proposição antecedente falsa, logo, ainda não se pode determinar o valor lógico de sua conseqüente (ou seja, os gatos podem ou não estar na varanda). Na premissa III (após se aplicar Lei de De Morgan), tem-se que é falsa, então v~ é verdadeira. A premissa III, após a aplicação da Lei de De Morgan, é disjuntiva. Então, a única conclusão possível para o argumento é a apresentada na alternativa a. Resposta: letra a. 2) Sejam as seguintes proposições : I. ( )( ) ( )RPQPP →∨→↔ II. ( ) ( )( )QRPQP ∧∨↔→~ III. ( )( ) ( )( )RQPRQP →→→→∧ Admitindo-se que os valores lógicos das proposições P, Q e R são respectivamente, F, F e V (V, se verdadeiro; F, se falso), os valores lógicos das proposições compostas I, II e III são, respectivamente: a) F, F, F b) F, F, V c) F, V, F d) V, V, V e) V, F, V Solução: Facilmente solucionável para quem conhece a valoração de proposições lógicas compostas. I. Se as proposições P e Q são falsas e R verdadeira, então RP → é verdadeira e a proposição lógica disjuntiva desde item é verdadeira sem que seja preciso analisar o valor lógico de ( )( )QPP →↔ , que é falso (verifique!). Apenas com a certeza do valor lógico da proposição do item I, já eliminamos as alternativas a, b e c. Para se chegar à resposta correta, basta agora analisar a proposição do item II:
    • Prof. Milton Araújo cursoanpad@gmail.com2 ( ) ( )( )QRPQP ∧∨↔→~ . Com os valores lógicos dados para as proposições P e Q (ambas falsas) e R (verdadeira), verifica-se que ( )QP ~→ é verdadeira e que ( )( )QRP ∧∨ é falsa, levando a bicondicional ao valor lógico falso. Resposta: letra e. 3) Uma ilha muito distante era habitada por dois povos rivais que estavam em guerra: o povo condicional e o povo incondicional. Ambos tinham as mesmas palavras em seu vocabulário, mas estruturas oracionais distintas. O povo condicional conhecia proposições, a negação de proposições, proposições condicionais e proposições bicondicionais, mas desconhecia a conjunção e a disjunção entre proposições. O povo incondicional conhecia proposições, a negação de proposições, a disjunção e a conjunção entre proposições. Qual das seguintes alternativas ilustra, entre parênteses, a tradução CORRETA da língua condicional para a língua incondicional? a) Se o povo condicional ganhar a batalha, não deixará o povo incondicional habitar a ilha. (O povo condicional ganha a batalha e o povo incondicional não habitará a ilha) b) Se o povo condicional não ganhar a batalha, o povo incondicional monopolizará a ilha. (O povo condicional não ganha a batalha ou o povo incondicional monopolizará a ilha.) c) Se o povo condicional perder a batalha, o povo incondicional ganhará a batalha. (O povo condicional perde a batalha ou o povo incondicional perderá a batalha). d) Não é o caso que, se o povo condicional não ganhar a batalha, ele deixará a ilha. (O povo condicional não ganha a batalha e não deixará a ilha.) e) O povo incondicional ganhará a batalha se, e somente se, ele monopolizar a ilha. (O povo incondicional ganha a batalha e monopoliza a ilha.) Solução: Observe o candidato que a questão é puramente conceitual! Basta “traduzir” as proposições da linguagem condicional (ou bicondicional) para proposições conjuntivas ou disjuntivas, usando as seguintes equivalências: (1) Para a condicional: ( )qpqp ~~ ∧⇔→ ou qpqp ∨⇔→ ~ ou ainda ( ) ( )qpqp ~~ ∧⇔→ (negativa da condicional) (2) Para a bicondicional: ( ) ( )[ ]qpqpqp ~~ ∨∧∨⇔↔ Pelas considerações acima, somente a proposição da alternativa d (negativa da condicional) expressa corretamente a tradução da linguagem condicional para uma proposição conjuntiva. Resposta: letra d. 4) Analise as seguintes proposições: I. QP → é F, ou seja ( ) FQPV =→ II. QR ~∨ é V, ou seja ( ) VQRV =∨ ~ III. ( ) PRQ ∧↔ é F, ou seja ( )( ) FPRQV =∧↔ Os valores lógicos (V , se verdadeiro; F, se falso) de P, Q e de R são, respectivamente: a) V, V, V b) V, V, F c) V, F, V d) V, F, F e) F, V, V Solução: I. A proposição é uma condicional e seu valor lógico é falso, logo a proposição antecedente é verdadeira e a proposição conseqüente é falsa, ou seja: P é verdadeira e Q é falsa. Imediatamente, eliminam-se as alternativas a, b, e. Da proposição II vem a alternativa correta: R deve ter valor lógico verdadeiro para que a proposição disjuntiva tenha valor lógico verdadeiro. Resposta: letra c. 5) Beatriz, Carmem e Diana são esposas de Eduardo, Felipe e Gabriel, mas não necessariamente nessa ordem. Sabe-se que: I. Eduardo é marido da mulher mais jovem; II. Beatriz é mais velha que a esposa de Felipe; III. As três mulheres citadas têm idades distintas;
    • Prof. Milton Araújo cursoanpad@gmail.com3 IV. Não há bigamia entre esses casais. Logo, pode-se afirmar com certeza que: a) Beatriz é a esposa de Gabriel. b) A idade de Beatriz é menor que a de Carmem. c) Diana é esposa de Felipe. d) Gabriel é marido de Carmem. e) Eduardo é marido de Beatriz. Solução: Das proposições dadas, sabe-se que Beatriz não é esposa do Eduardo, nem do Felipe, logo, ela só pode ser esposa do Gabriel. Resposta: letra a. 6) Em determinado campeonato de futebol, analisam-se as condições de alguns resultados: I. Se a Portuguesa venceu, nem o Estrela nem o Navegantes foram para a próxima fase. II. Se o Navegantes não foi para a próxima fase, o Ipiranga venceu. III. Se o Ipiranga venceu, o Serrinha foi rebaixado. Sabe-se que o Serrinha não foi rebaixado; portanto: a) a Portuguesa não venceu e o Navegantes não foi para a próxima fase. b) O Estrela e o Navegantes não foram para a próxima fase. c) O Navegantes não foi para a próxima fase e o Ipiranga não venceu. d) A Portuguesa e o Ipiranga não venceram. e) O Navegantes não foi para a próxima fase ou o Ipiranga venceu. Solução: Questão de lógica de argumentação. Usamos aqui nosso método1 rápido para encontrar a resposta. Sejam as proposições: Pv : A Portuguesa venceu; E : O Estrela foi para a próxima fase; N : O Navegantes foi para a próxima fase; Iv : O Ipiranga venceu; Sr : O Serrinha foi rebaixado. O argumento, em linguagem simbólica, fica assim: Condição de Validade I ( )NEPv ~~ ∧→ V II IvN →~ V III SrIv → V IV Sr~ V C ? V Da premissa IV sabe-se que o Serrinha não foi rebaixado. Desse modo, na premissa III sabe-se que é falso que o Ipiranga venceu. Na seqüência, sabe-se, também, na premissa II, que é falso que o Navegantes não foi para a próxima fase. Finalmente, da premissa I tem-se que é falso que a Portuguesa venceu. Daí, tem-se a conclusão: Nem a Portuguesa e nem o Ipiranga venceram. Resposta: letra d. 7) Se Alfredo ama Rebeca, ele vai se casar com ela e não vai comprar uma casa. Caso ele se case, não comprará a casa. Mas, de fato, ele comprou uma casa. Logo, pode-se dizer que: a) Alfredo vai se casa com Rebeca. b) Alfredo não comprar a casa. c) Alfredo vai se casar com Rebeca e vai comprar uma casa. d) Alfredo ama Rebeca. 1 Nota do professor: o método que usamos para validar argumentos é visto em uma aula do curso presencial. Ele é um método fácil de se entender no modo “expositivo”, mas difícil de ser explicado de forma escrita. Nossos alunos do curso presencial conseguem resolver qualquer questão de lógica de argumentação em menos de 30 segundos.
    • Prof. Milton Araújo cursoanpad@gmail.com4 e) Alfredo não ama Rebeca. Solução: Mais um questão de lógica de argumentação. Sejam as proposições: Ar : Alfredo ama Rebeca; Cr : Alfredo vi se casar com Rebeca; Cc : Alfredo compra uma casa; O argumento, em linguagem simbólica, fica assim: Condição de Validade I ( )CcCrAr ~∧→ V II CcCr ~→ V III Cc V C ? V Da premissa III sabe-se que ele comprou a casa, então, na premissa II tem-se que é falso que ele se casou com Rebeca. Na premissa I, então, também se sabe que ele não ama Rebeca. Resposta: letra e. 8) O que caracteriza uma tautologia e uma contradição é o fato de: a) Ambas apresentarem, em suas tabelas-verdade, somente valores-verdade verdadeiros. b) Ambas apresentarem, em suas tabelas-verdade, somente valores-verdade falsos. c) Apresentarem, em suas tabelas-verdade, apenas valores-verdade verdadeiros e apenas valores- verdade falsos, respectivamente. d) Apresentarem, em suas tabelas-verdade, apenas valores-verdade falsos e apenas valores-verdade verdadeiros, respectivamente. e) Ambas apresentarem, em suas tabelas-verdades, valores-verdades intercalados entre falso e verdadeiro. Solução: Outra questão puramente conceitual. “Tautologia é toda proposição lógica composta que sempre terá resultado lógico verdadeiro”. “Contradição é toda proposição lógica composta que sempre terá resultado lógico falso”. Resposta: letra c. 9) Sejam as proposições: :P Faz frio. :Q Chove. :R Faz sol. A proposição composta ( ) ( )RPQP ~~~ ∧→∧ , na linguagem corrente, é: a) Faz frio e chove, mas faz não faz frio e faz sol. b) Faz frio e não chove, mas faz frio e não faz sol. c) Faz frio e não chove, desde que faça frio e não faça sol. d) Se faz frio e não chove, então não faz frio e não faz sol. e) Se faz frio e não chove, não é verdade que faz frio e faz sol. Solução: Questão muito simples. Basta levar a proposição dada em linguagem simbólica para a linguagem corrente. Aqui nem sequer o uso de álgebra de proposições foi exigido do candidato. Resposta: letra d. 10) “Hoje é quarta-feira ou hoje é quinta-feira, e hoje é quarta-feira ou hoje é dia de feira no supermercado”. Dito de outra forma, é: a) “se hoje é quarta-feira, hoje é dia de feira no supermercado”. b) “se hoje é dia de feira no supermercado, hoje é quarta-feira e não é quinta-feira”. c) “se hoje não é quarta-feira, hoje é quinta-feira e é dia de feira no supermercado”. d) “hoje não é quarta-feira e não é quinta-feira”.
    • Prof. Milton Araújo cursoanpad@gmail.com5 e) “se hoje é quinta-feira, hoje não é dia de feira no supermercado”. Solução: Ao contrário da questão anterior, esta já exigiu do candidato um bom domínio da álgebra proposicional. Sejam as proposições: p : hoje é quarta-feira; q : hoje é quinta-feira; r : hoje é dia de feira no supermercado. A proposição dada, em linguagem simbólica, fica assim: ( ) ( )rpqp ∨∧∨ Pela propriedade distributiva, pode-se escrever: ( )rqp ∧∨ . Negando-se duplamente a proposição acima: ( )( )rpp ∧∧ ~~~ A proposição acima é equivalente à condicional: ( )rqp ∧→~ , que, em linguagem simbólica fica: “Se hoje não é quarta-feira, então hoje é quinta-feira e é dia de feira no supermercado”. Resposta: letra c. 11) Considere a tabela abaixo, na qual jiij BCA += com { }3,2,1, ∈ji . + 1B 2B 3B 1C 11A 12A 13A 2C 21A 22A 23A 3C 31A 32A 33A a) 1C = 2 b) 11A = 4 c) 12A = 5 d) 22A = 1 e) 23A = -1 Solução: Basta completar o quadro dado com as informações do enunciado: + 1B = 5 2B = 3 3B = -2 1C = -1 11A = 4 12A = 2 13A = -3 2C = 2 21A = 7 22A = 5 23A = 0 3C = 7 31A = 12 32A = 10 33A = 5 Resposta: letra b. 12) Considere a proposição composta ( ) ( )QPQP ∧∨∨ ~~ . Uma forma alternativa (ou simplificada) de expressar a mesma proposição é a) QP ∧ b) QP ~∧ c) QP ∧~ d) QP ~~ ∧ e) P~ Solução: Por De Morgan, tem-se, inicialmente: ( ) ( )QPQP ∧∨∧ ~~~ . Pela propriedade distributiva: ( )QQP ∨∧ ~~ . A expressão dentro do parênteses é uma tautologia. Numa proposição conjuntiva em que uma delas for tautológica, o resultado será equivalente à outra proposição. No caso acima resulta em P~ . Resposta: letra e. 13) Roberto viajou para Moscou no inverno. Durante o tempo em que esteve lá, houve 6 tardes e 3 manhãs sem neve; nevou 5 vezes, mas nunca durante a manhã e à tarde de um mesmo dia. Então, Roberto permaneceu em Moscou por a) 5 dias b) 6 dias c) 7 dias d) 8 dias e) 9 dias Solução: Esta questão consta no nosso simulado2 de número 13 (setembro de 2004), questão 8. 2 Consulte o caderno de Simulados do Instituto Integral.
    • Prof. Milton Araújo cursoanpad@gmail.com6 Somando-se todos os turnos com neve e sem neve, vem: 6 + 3 + 5 = 14. Deve-se dividir por 2... Resposta: letra c. 14) Assinale a alternativa que apresenta uma estrutura de argumento não-válida. a) Não é verdade que, se Ricardo foi à festa, Renata foi à festa. Portanto, se Ricardo não foi à festa, Renata não foi à festa. b) Ricardo não foi à festa e Renata não foi à festa. Consequentemente, ambos não foram à festa. c) Não é o caso que Ricardo foi à festa ou Renata foi à festa. Logo, Ricardo não foi à festa ou Renata não foi à festa. d) Se Ricardo não foi à festa, Renata não foi à festa. Portanto, não é verdade que, se Ricardo foi à festa, Renata foi à festa. e) Não é o caso que, se Ricardo não foi à festa, Renata foi à festa. Assim, Renata não foi à festa. Solução: Analisam-se os argumentos um a um... Alternativa a) Para que a proposição dada como premissa seja verdadeira, é necessário que sua antecedente seja verdadeira e sua conseqüente seja falsa. Observe-se que a premissa traz a negação da proposição condicional. A conclusão do argumento o torna válido. Alternativa b) A premissa é uma proposição conjuntiva, logo, ambas as proposições simples que formam a composta devem ter valor lógico verdadeiro. Argumento válido. Alternativa c) A premissa é a negação de uma proposição disjuntiva, logo, nem Ricardo, nem Renata foram à festa. Argumento válido. Alternativa d) A premissa é a contrária ou inversa da conclusão. Argumento não-válido. Resposta: letra d. 15) Karen, Luiza, Mara Nestor e Olga foram a um parque de diversões onde havia as seguintes opções: montanha russa, carrossel e trem-fantasma . sabe-se que I. todos andaram em um dos brinquedos citados II. Mara foi a única que brincou sozinha III. Olga e Nestor fizeram escolhas distintas IV. Luiza não brincou com Olga V. Karen não andou no trem-fantasma VI. Olga não andou no carrossel VII. Mara não andou no trem-fantasma Logo, é CORRETO afirmar que: a) Mara andou na montanha russa. b) Luiza e Karen andaram no carrossel. c) Nestor e Luiza andaram na montanha russa. d) Karen e Nestor andaram no trem-fantasma. e) Nestor e Luiza andaram no trem-fantasma. Solução: O enunciado permite que se monte o seguinte quadro: Karen Luíza Mara Nestor Olga Montanha russa X X Carrossel X Trem-fantasma X X Resposta: letra e. 16) Sabe-se que, I. com 2 triângulos eqüiláteros de lado 1, forma-se um losango de lado 1 II. com 8 triângulos eqüiláteros de lado 1, forma-se um losango de lado 2 III. com 18 triângulos eqüiláteros de lado 1, forma-se um losango de lado 3 IV. com 32 triângulos eqüiláteros de lado 1, forma-se um losango de lado 4 Logo, com 338 triângulos de lado 1, forma-se um losango de lado a) 12 b) 13 c) 14 d) 15 e) 16
    • Prof. Milton Araújo cursoanpad@gmail.com7 Solução: Os quocientes entre o número de triângulos e o valor do lado do losango formam a seguinte Progressão Aritmética: 2, 4, 6, 8, ... Assim, pode-se escrever: ( ) rnaan ⋅−+= 11 ( ) 212 338 ⋅−+= n n 11 169 −+= n n 2 169 n= 13=n Resposta: letra b. 17) Considere as seguintes premissas: I. Nenhum estudante é ignorante. II. Todo administrador é estudante. Uma conclusão possível, decorrente dessas premissas, é a de que a) nenhum administrador é ignorante. b) algum administrador é ignorante. c) todo administrador é ignorante. d) algum estudante é ignorante. e) todo estudante é administrador. Solução: Resposta: letra a. 18) Seis estudantes vão viajar de ônibus para visitar certa empresa. Foram reservadas as poltronas 7 e 8, 11 e 12, 15 e 16. essas poltronas são seqüenciais e ficam do mesmo lado do corredor, como mostra a figura. Antes de os estudantes entrarem no ônibus, foram designados os números das poltronas que cada um ocuparia, levando-se em consideração as seguintes informações: • Jorge e Pedro são irmãos e é melhor que não fiquem em poltronas consecutivas nem adjacentes. • Marcus e Bia pretendem ler, juntos um livro durante a viagem; portanto, devem sentar-se em poltronas consecutivas. • Aline e Gabi são amigas, mas não estão uma ao lado da outra, pois as duas gostam de sentar-se no corredor • Bia não está sentada atrás de Aline. Assim, pode-se afirmar que um dos arranjos possíveis é: a) Marcus e Bia na frente, Aline e Pedro no meio e Gabi e Jorge atrás. b) Aline e Pedro na frente, Marcus e Bia no meio e Gabi e Jorge atrás. c) Aline e Pedro na frente, Gabi e Jorge no meio e Marcus e Bia atrás. d) Jorge e Pedro na frente, Marcus e Bia no meio, Gabi e Aline atrás. e) Aline e Gabi na frente, Marcus e Bia no meio e Pedro e Jorge atrás. Solução: Para satisfazer a primeira consideração. Jorge e Pedro deverão ocupar poltronas na primeira e terceira fileiras mostradas na figura da questão. Disso, resulta que Marcus e Bia deverão ocupar as poltronas do centro. Aline e Gabi deverão ocupar as poltronas 8 e 16 (não necessariamente nesta
    • Prof. Milton Araújo cursoanpad@gmail.com8 mesma ordem). Entretanto, se Aline estiver na poltrona 8, Bia deverá estar na poltrona 11. Desse modo, um possível arranjo seria: Pedro (poltrona 7), Aline (poltrona 8); Bia (poltrona 11, Marcus (poltrona 12); Jorge (poltrona 15) e Gabi (poltrona 16). Resposta: letra b. 19) Em um planta longínquo, a moeda é o dinheiru, simbolizada por Ж$. Sabe-se que, nesse planeta, existe a seguinte tabela promocional de preços para alguns animais: 2 rinomachos por Ж$ 10,00; 3 rinofêmeas por Ж$ 9,00 e 6 rinobebês por Ж$ 2,00. se Estevaldo gastou Ж$ 100,00 nessa promoção, qual o número máximo de rinomachos que ele comprou, considerando-se que gastou todo seu montante, levou ao menos um animal de cada tipo e comprou 100 animais? a) 4 b) 8 c) 10 d) 12 e) 14 Solução: Questão idêntica à questão 19 do nosso primeiro simulado, e também à questão RL/14 – JUN/05, resolvida em nossa super-aula de revisão, na véspera do teste... Montando-se as equações: 5102 =⇒= RmRm (o valor de cada rinomacho é Ж$ 5,00) 393 =⇒= RfRf (o valor de cada rinofêmea é Ж$ 3,00) 3126 =⇒= RbRb (o valor de cada rinobebê é Ж$ 0,33) A partir daí, escrevem-se as seguintes equações (uma para a quantidade total de animais e outra para o valor gasto pelo Estevaldo): 100 3 35 100 =++ =++ b fm bfm isolando-se b na primeira equação, e, após multiplicar-se toda a segunda equação por 3, substituir-se o novo valor de b nela, vem: 200814 300100915 100 =+ =−−++ −−= fm fmfm fmb Agora, isola-se o f : 8 14200 m f − = , simplificando-se: 4 7100 m f − = Para os valores apresentados nas alternativas da questão, o número máximo de rinomachos que ele poderia ter comprado seriam 12. Entretanto, para poder participar da “promoção”, ele deverá adquirir quantidades de rinofêmeas em número múltiplo de 3 (ver tabela a seguir). Desse modo, o número máximo possível de rinomachos “dentro da promoção” é 4. m f b Ж$ 4 18 78 100,00 viável 8 11 81 100,00 inviável 10 7,5 82,5 100,00 inviável 12 4 84 100,00 inviável (4 não é múltiplo de 3) 14 0,5 85,5 100,00 inviável Resposta: letra a. 20) Manoel recebeu as seguintes instruções para sua viagem: I. Siga à esquerda e retorne se, e somente se, seu destino for Albuquerque. II. Se seu destino for Albuquerque, siga à direita. III. Siga à esquerda. IV. Retorne ou siga para a colônia de férias. Sabe-se que Manoel obedeceu a todas as instruções. Logo a) seu destino era Albuquerque. b) seu destino não era Albuquerque e ele seguiu para a colônia de férias. c) chegou a Albuquerque, seguindo à esquerda. d) seguiu sempre em frente e à direita.
    • Prof. Milton Araújo cursoanpad@gmail.com9 e) retornou. Solução: Mais uma questão de lógica de argumentação. Observe que, nesta questão, as premissas “seguir à direita” e “seguir à esquerda” são contraditórias. Colocando-se o argumento em linguagem simbólica: Condição de Validade I ( ) are ↔∧ V II da → V III e V IV fr ∨ V C ? V Da premissa III “seguir à esquerda” deve ser verdadeira, então, na premissa II, “seguir à direita” é falsa, e, portanto, o destino de Manoel não é Albuquerque. Na premissa I verifica-se que “retornar” é falsa, logo, na premissa IV, “ir para a colônia de férias” deve ser verdadeira. Conclusão: Manoel não foi para Albuquerque e foi para a colônia de férias. Resposta: letra b.
    • Prof. Milton Araújo cursoanpad@gmail.com10 1) Um fazendeiro contratou uma empresa para a construção de uma estrada de 5 km de extensão. Como o terreno em que seria construída a estrada não era regular e o grau de dificuldade da construção da mesma era crescente, os pagamentos deveriam ser realizados nas seguintes condições: R$ 1.000,00 pelos primeiros 500 m, R$ 2.000,00 pelos 500 m seguintes, e assim por diante, aumentando-se sempre de R$ 1.000,00 o valor do serviço a cada 500 m. Considerando-se esses dados, o valor total que a empresa recebeu foi de a) R$ 10.000,00 b) R$ 11.000,00 c) R$ 40.000,00 d) R$ 55.000,00 e) R$ 110.000,00 Solução: A situação proposta indica que os pagamentos foram feitos sob a forma de uma progressão aritmética de razão igual a R$ 1.000,00. O valor obtido pelo serviço é dado pela soma dos 10 termos (pois kmm 550010 =× ) da progressão aritmética. ( ) 2 1 naa S n n ⋅+ = (fórmula da soma de n termos de uma progressão aritmética), e ( ) rnaan ⋅−+= 11 (fórmula do termo geral de uma progressão aritmética) Tem-se, pelos dados da questão: 10001 =a ; 1000=r e 10=n Assim, calculam-se: ( ) 100001000110100010 =⋅−+=a ( ) 55000 2 10100001000 10 = ⋅+ =S Resposta: letra d. 2) A diferença entre o comprimento x e a largura y de um paralelepípedo reto é de 3 cm, enquanto a diferença entre a altura z e o comprimento x é de 5 cm. Sabendo-se que 4 e -3 são raízes do polinômio ( ) 36152 23 −−+= xxxxp , e que o volume do paralelepípedo é menor que 36 3 cm e diferente de zero, uma das soluções corretas para o problema prevê que a) o comprimento x deve ser maior que 3 cm e menor que 5 cm. b) o comprimento x deve ser maior que 3 cm e menor que 4 cm. c) o comprimento x deve ser maior que zero e menor que 3 cm. d) o comprimento x deve ser maior que zero e menor que 4 cm. e) o comprimento x deve ser maior que 4 cm e menor que 6 cm. Solução: Pelos dados do problema, tem-se: 5 3 =− =− xz yx 36<= xyzV O polinômio dado está em função do comprimento x do paralelepípedo. Com as equações dadas, podemos escrever: 5 3 += −= xz xy Substituindo-se estes resultados na inequação do produto: ( ) ( ) ( ) ( ) 03653 3653 <−+⋅−⋅ <+⋅−⋅ xxx xxx A expansão da inequação ao lado é dada pelo polinômio que consta no enunciado da questão, ou seja: ( ) 36152 23 −−+= xxxxp . Então, temos a seguinte inequação: 036152 23 <−−+ xxx No enunciado, foram dadas as raízes do polinômio, para facilitar a resolução... Como 4 é a maior raiz do polinômio e x deve ser maior do que 3, pois 3−= xy , então, 43 << x
    • Prof. Milton Araújo cursoanpad@gmail.com11 Resposta: letra b. 3) Godofredo possui um cofre que tem 4 rodas na fechadura da porta, sendo que cada uma delas tem 9 números que vão de 1 a 9. ele esqueceu o segredo, mas sabe que os quatro números são distintos, que os números da primeira e da última rodas são ímpares, e que o da segunda e da terceira são pares e um é múltiplo do outro. Como não gosta do número 4, ele também sabe que o 4 não faz parte do segredo do cofre. Assim, o número máximo de tentativas que Godofredo deverá fazer para abrir seu cofre é a) 80 b) 100 c) 120 d) 150 e) 180 Solução: Para o número que ocupa a primeira posição do segredo, Godofredo tem 5 possibilidades: { }9,7,5,3,1 . Observe que, ao usar um desses números na primeira casa, Godofredo terá apenas 4 deles para a última casa (lembre-se: o segredo tem algarismos distintos, isto é, nenhum deles se repete!). Para a segunda casa, Godofredo tem os seguintes algarismos pares: { }8,6,2 , entretanto, ele só poderá usar os pares { }6,2 e { }8,2 , visto que o par { }8,6 está descartado, pois não forma um par em que um dos números é múltiplo do outro. Disto resulta o seguinte (pelo Princípio Fundamental da Contagem): 804225 =××× Resposta: letra a. 4) Em uma confeitaria, 4 doceiras trabalham 6 horas por dia de maneira a produzirem 120 doces diariamente. Essa confeitaria recebeu uma encomenda de 2.000 doces e, para cumprir o prazo estipulado, contratou mais 6 doceiras que, juntamente com as demais, passaram a trabalhar 8 horas diárias, exclusivamente para atender essa encomenda. Supondo-se que as novas doceiras trabalhem no mesmo ritmo das demais, o prazo de entrega da encomenda é de a) 3 dias b) 4 dias c) 5 dias d) 6 dias e) 7 dias Solução: doceiras h/dia dias doces 4  6  1  120 10  8  x  2000 inversa inversa direta (consulte o arquivo ANPAD_Regras_de_Três_Passo-a-passo) 5 120810 200064 = ×× ×× =x Resposta: letra c. 5) Uma indústria fabrica três modelos diferentes de sofás: Berlin, Paris e Veneza. Abaixo, a Tabela 1 mostra o número de almofadas e de “pufs” que acompanham cada modelo, e a Tabela 2 mostra a produção que a fábrica planeja alcançar para os meses de janeiro e fevereiro. Modelo Mês Componentes Berlin Paris Veneza Modelo janeiro fevereiro Almofadas 4 6 8 Berlin 500 600 “Pufs” 2 3 4 Paris 200 300 Veneza 300 250 As quantidades de almofadas e de “pufs” que deverão ser produzidos nesses dois meses são, respectivamente. a) 5.600 e 5.900 b) 5.600 e 2.800 c) 6.200 e 3.100 d) 11.800 e 2.800 e) 11.800 e 5.900 Solução: Basta realizar o produto matricial:
    • Prof. Milton Araújo cursoanpad@gmail.com12           250300 300200 600500       432 864       31002800 62005600 A soma das linhas da matriz-produto indica, respectivamente, o total de almofadas e de “pufs”: 590031002800 1180062005600 =+ =+ Resposta: letra e. 6) Em um supermercado, um cartaz anuncia a seguinte promoção: Capa de filé – R$ 4,00 (o quilo) Na compra igual ou acima de 5 kg e abaixo de 10 kg, 10% de desconto sobre o valor total. Na compra igual a ou acima de 10 kg, 15% de desconto sobre o valor total A partir das informações constantes nesse cartaz, pode-se afirmar que a função v que melhor representa o valor a ser pago por x quilos de capa de filé é a) ( ) xxv 4= b) ( )      ≥ <≤ << = 10,6,0 105,4,0 50,4 xx xx xx xv c) ( )      ≥ <≤ << = 10,4,3 105,6,3 50,4 xx xx xx xv d) ( )      ≥− <≤− << = 10,154 105,104 50,4 xx xx xx xv e) ( )      ≥− <≤− << = 10,15,04 105,0,14 50,4 xxx xxx xx xv Solução: Descontando-se 10% de 4,00, tem-se: 3,60 Descontando-se 15% de 4,00, tem-se: 3,40 Resposta: letra c. 7) Um médico receitou a um paciente 10.000 gotas de um medicamento injetável (tipo soro). O frasco que contém o medicamento tem a forma de um cilindro circular reto de diâmetro igual a 4 cm e altura igual a 8 cm. O líquido no frasco, porém, fica na marca de 1 cm abaixo da borda do cilindro, conforme mostra a figura. Admitindo-se que uma gota é uma esfera de raio 0,2 cm e utilizando-se π = 3, pode-se afirmar que a) será necessário adquirir 4 frascos de soro. b) será necessário adquirir 3 frascos de soro. c) em cada frasco cabem 3.500 gotas de soro. d) em cada frasco cabem 3.300 gotas de soro. e) o volume do frasco é de 168 3 cm .
    • Prof. Milton Araújo cursoanpad@gmail.com13 Solução: O formulário foi fornecido na primeira página da prova! Calculam-se o volume do líquido contido em um frasco (volume do cilindro) e o volume de uma gota do medicamento (volume da esfera) Volume do medicamento contido no frasco: 84723 22 =⋅⋅=⋅⋅= hrVc π 3 cm Volume de cada gota do medicamento: ( ) 032,02,03 3 4 3 4 33 =⋅⋅=⋅⋅= rVe π 3 cm Em um frasco, então, cabem 2625032,084 =÷ gotas. O paciente deverá adquirir no mínimo 4 frascos do medicamento. Resposta: letra a. 8) Em uma empresa foi realizada uma pesquisa com 1.000 funcionários sobre o número de filhos de cada um deles. Os dados obtidos foram organizados na tabela abaixo. Número de filhos ( x ) 0 1 2 3 4 5 Total Freqüência relativa (%) 10 35 28 20 5,5 1,5 100% Baseando-se nessa tabela, pode-se afirmar que a) existe uma tendência de os funcionários terem, aproximadamente, 3 filhos. b) existe uma tendência de os funcionários terem, aproximadamente, 2 filhos. c) existe uma tendência de os funcionários terem, aproximadamente, 1 filho. d) 10% dos funcionários têm 4 ou 5 filhos. e) 45% dos funcionários têm 2 ou 3 filhos. Solução: A média do conjunto dado é: 8,1015,05055,0420,0328,0235,0110,00 ≅×+×+×+×+×+×=x Resposta: letra b. 9) Ainda a partir dos dados da tabela da questão 28, a probabilidade de um funcionário escolhido ao acaso ter menos de três filhos é de a) 0,93 b) 0,73 c) 0,63 d) 0,27 e) 0,07 Solução: 10% + 35% + 28% = 73%, ou 0,73 Resposta: letra b. 10) Sabendo-se que π≤≤ x0 , a solução da inequação 1 2 1 ≤< senx é a) 3 0 π <≤ x b) 3 0 π ≤< x c) 4 3 4 ππ << x d) 6 5 6 ππ << x e) 6 5 6 ππ ≤< x Solução: No gráfico acima estão assinalados os ângulos cujo seno é igual a 2 1 . Mas, de acordo com o enunciado, 1 2 1 ≤< senx , o ângulo x não poderá assumir os valores extremos do intervalo, logo:
    • Prof. Milton Araújo cursoanpad@gmail.com14 6 5 6 ππ << x Resposta: letra d. 11) Em uma empresa, 30% dos funcionários cursaram apenas o Ensino Fundamental, 45% cursaram apenas o Ensino Fundamental e Médio e o restante, além do Ensino Fundamental e Médio, têm nível superior. Entre os que cursaram apenas o Ensino Fundamental, 20% trabalham no setor A; entre os que cursaram apenas o Ensino Médio além do Fundamental, 10% trabalham no mesmo setor A; e entre os que têm nível superior além do Ensino Fundamental e Médio, 3% trabalham nesse setor A. Um funcionário desse setor pediu demissão; a probabilidade aproximada de ele ter nível superior é de a) 0,15 b) 0,13 c) 0,10 d) 0,09 e) 0,07 Solução: Pelo modo prático3 de se resolver problemas pelo Teorema de Bayes... Tomam-se 2000 funcionários (neste caso, tomam-se 2000 para facilitar os cálculos...). Então, tem- se: 600 cursaram apenas o Ensino Fundamental; 900 cursaram apenas o Ensino Fundamental e Médio; 500 têm nível superior. 20% de 600 = 120 cursaram apenas o Ensino Fundamental e trabalham no setor A; 10% de 900 = 90 cursaram apenas o Ensino Fundamental e Médio e trabalham no setor A; 3% de 500 = 15 têm nível superior e trabalham no setor A. No caso acima, tem-se um total de 120 + 90 + 15 = 225 funcionários no setor A. dentre eles, há 15 com nível superior. Assim a probabilidade de o funcionário do setor A que pediu demissão ter nível superior é dada por 15/225 = 0,0666... Resposta: letra e. 12) Gumercindo foi ao banco resgatar um título, após 6 meses de aplicação, e recebeu R$ 39.200. No momento do resgate, foi informado de que esse montante incluía R$ 4.200,00 referentes aos juros do período. Assim, a taxa de juros anual é de a) 12,44% b) 14,40% c) 25,44% d) 30,12% e) 35,44% Solução: Foram dados o montante ( 39200=M ); os juros ( 4200=J ) e o prazo, em meses, ( 6=n ). Fórmula: ( )n iCM +⋅= 1 . A taxa e o prazo devem estar na mesma referência de tempo, logo, 2 1 =n ano. O capital é calculado subtraindo-se os juros do montante, o que resulta em 35000=C . Da fórmula, vem: ( ) 21 13500039200 i+⋅= ⇒ ( ) 35000 39200 1 21 =+ i ⇒ ( ) 12,11 21 =+ i . Elevando-se ambos os membros ao quadrado: ( )[ ] ( )2221 12,11 =+ i ⇒ ( ) 2544,11 =+ i ⇒ %44,25=i ao ano. Resposta: letra c. 13) Uma escola foi construída num lote retangular de 1.750 2 m de área. A parte térrea da escola é também retangular e possui 600 2 m de área, com perímetro de 140 m. Os possíveis valores do comprimento e da largura do lote, considerando-se as indicações apresentadas na figura ao lado, são, respectivamente. a) 100m e 17,5 m b) 87,5 m e 20 m c) 70 m e 25 m d) 60 m e 10 m e) 50 m e 35 m. 3 Visto em nossas aulas do curso preparatório.
    • Prof. Milton Araújo cursoanpad@gmail.com15 Solução: A figura acima foi cotada com as medidas desconhecidas. As medidas solicitadas na questão são ( )15+x e y . Os dados do problema permitem que se escrevam as seguintes equações: 600=xz Equação I ( ) ( ) 701402 =+⇒=+⋅ zxzx Equação II ( ) 175015 =⋅+ yx Equação III Da Equação I, vem: x z 600 = . Substituindo-se na Equação II: 70 600 =      + x x ⇒ 0600702 =+− xx , cujas raízes são 10 e 60 (que são as dimensões da escola: 10=x e 60=z ). As dimensões do terreno são 25 e 70 (substitua o valor de x na Equação III e calcule y ) Resposta: letra c. 14) Considere o triângulo cujos vértices são os pontos A(4, 2), B(-3, -1) e C(-5, 0). Sobre o perímetro P do triângulo ABC, pode-se afirmar que a) é 15 b) é menor que 15 c) é maior que 21 d) pertence ao intervalo [18, 21] e) pertence ao intervalo [15, 18] Solução: Utiliza-se a fórmula da distância entre dois pontos para o cálculo dos lados do triângulo: ( ) ( )22 , ABABBA yyxxd −+−= . Assim, a distância entre os vértices A e B é: ( ) ( ) 582143 22 , =−−+−−=BAd Distância entre os vértices A e C é: ( ) ( ) 852045 22 , =−+−−=CAd Distância entre os vértices B e C é: ( ) ( ) 51035 22 , =+++−=CBd Obtém-se o valor aproximado para o perímetro do triângulo, já que a soma 58558 ++ não pode ser determinada com exatidão nas condições da prova... Observe que 58 deve ser um valor maior do que 7; 85 deve resultar em um valor maior do que 9 e 5 deve ser maior do que 2. Então ( ) 1858558 >++ Resposta: letra d. 15) O total de anagramas da palavra ANPAD é exatamente igual à medida, em graus, do ângulo de um triângulo compreendido entre dois lados congruentes que medem 5 cm cada. Pode-se afirmar que a) o triângulo é eqüilátero e tem o perímetro de 15 cm. b) o triângulo é eqüilátero e tem o perímetro de 16 cm. c) o triângulo é eqüilátero e tem o perímetro de 20 cm. d) o triângulo é isósceles e os ângulos da base medem 30º cada. e) o triângulo é isósceles e os ângulos da base medem 70º cada. Solução:
    • Prof. Milton Araújo cursoanpad@gmail.com16 O número de anagramas da palavra ANPAD é calculado pela fórmula da permutação com repetição: 60 2 120 !2 !52 5 ===P . Se dois lados congruentes de um triângulo formam um ângulo de 60º, então este triângulo é eqüilátero. Então o perímetro do triângulo de lado igual a 5 cm é 15 cm. Resposta: letra a. 16) Em relação aos intervalos de números reais ] [5,2−=A e [ [+∞= ,3B , analise as afirmações abaixo quanto a sua veracidade I. [ ]5,3=∩ BA II. { } A⊂− 4,1 III. A∈− 5 IV. B∈3 V. ] [+∞−=∪ ,2BA Logo, a) somente as afirmações I e II são verdadeiras. b) somente as afirmações II e IV são verdadeiras. c) somente as afirmações IV e V são verdadeiras. d) somente as afirmações I e III são falsas. e) somente as afirmações III e V são falsas. Solução: Analisando-se as afirmações com o auxílio da figura acima: I. Falsa; II. Verdadeira; III. Falsa; IV. Verdadeira; V. Verdadeira. Resposta: letra d. 17) A empresa XYZ tem três opções de pagamento na compra de um equipamento novo: • À vista, com 5% de desconto; • Em duas prestações mensais iguais, sem desconto, vencendo a primeira um mês após a compra; e • Em três prestações mensais iguais, sem desconto, das quais a primeira vence no ato da compra. Se o custo financeiro para a empresa é de 3% ao mês, a melhor e a pior entre as opções de pagamento da compra são, respectivamente. a) a primeira e a segunda opções. b) a primeira e a terceira opções. c) a segunda e a primeira opções. d) a segunda e a terceira opções.
    • Prof. Milton Araújo cursoanpad@gmail.com17 e) a terceira e a primeira opções. Solução: Pode-se arbitrar um valor para o equipamento e efetuar os cálculos para cada uma das opções determinadas no enunciado da questão, usando como data focal 0=n , com o uso da fórmula: ( )n iCM +⋅= 1 Supondo-se que o equipamento custe R$ 1.200,00, tem-se: • À vista, com 5% de desconto: R$ 1.140,00 • Em duas prestações mensais iguais, sem desconto, vencendo a primeira um mês após a compra: são duas parcelas de R$ 600,00 cada uma, que “descapitalizadas”, à taxa de 3% ao mês, para a data focal zero, produzem o seguinte valor: ( ) ( ) 00,148.1$ 03,1 600 03,1 600 21 R≅+ • Em três prestações mensais iguais, sem desconto, das quais a primeira vence no ato da compra: são três parcelas de R$ 400,00 cada uma. Descapitalizando-se a segunda e a terceira, tem-se: ( ) ( ) 00,165.1$ 03,1 400 03,1 400 400 21 R≅++ Com os valores encontrados na data focal zero para as três opções, conclui-se que a melhor delas é a primeira e a pior é a terceira. Resposta: letra b. 18) Considerando x e y números reais positivos e a e b números reais, qual das seguintes alternativas está INCORRETA? a) ( ) baa yxxy = v) ( ) baba xx × = c) 00 yx = d) baba xxx −=− e) b aa y x y x =      Solução: Analisando-se cada uma das alternativas: a) Correta! A potência de um produto é igual ao produto das potências; b) Correta! A potência da potência resulta no produto dos expoentes; c) Correta! Todo número elevado ao expoente zero é igual a 1. A exceção é “zero elevado a zero”, porém, o enunciado evidencia que x e y são números reais positivos; d) Incorreta! A regra que subtrai os expoentes é a do quociente de potências de mesma base, na qual a base se conserva e subtraem-se os expoentes. e) Correta! A potência de um quociente é igual ao quociente das potências. Resposta: letra d. 19) Seja um cone reto com a área da base igual a π16 2 cm . Sabe-se que a altura do cone é 5 cm menor que o diâmetro da base; logo, sendo Al a área lateral e V o volume do cone, pode-se afirmar que a) π40=Al 2 cm e π48=V 3 cm b) π40=Al 2 cm e π16=V 3 cm c) π24=Al 2 cm e π48=V 3 cm d) π20=Al 2 cm e π32=V 3 cm e) π20=Al 2 cm e π16=V 3 cm Solução: O raio da base do cone dado no enunciado é igual a 4. Logo, o diâmetro é igual a 8. Nestas condições, a altura do cone é igual a 3. No formulário dado na prova, tem-se: Área lateral do cone: rgS cone π=l (onde g é a geratriz do cone – observe a figura a seguir, que mostra um corte longitudinal do cone).
    • Prof. Milton Araújo cursoanpad@gmail.com18 Volume do cone: hrVcone 2 3 1 π= A hipotenusa do triângulo hachurado acima é a geratriz do cone. Observe, também, que o triângulo é pitagórico). Então: ππ 2054 =⇒⋅⋅= conecone SS ll 2 cm ππ 1634 3 1 2 =⇒⋅⋅= conecone VV 3 cm Resposta: letra e. 20) Em um retângulo, traçaram-se paralelas a seus lados de modo a formar outros retângulos, conforme a figura abaixo: Com relação aos retângulos sombreados, 1R e 2R , pode-se afirmar que a) suas áreas são iguais. b) a área de 2R é igual a duas vezes a área de 1R . c) a área de 1R é igual a duas vezes a área de 2R . d) 1R tem área maior que o dobro da área de 2R . e) 2R tem área maior que o dobro da área de 1R . Solução: Na figura acima foram nomeados alguns vértices e lados nos respectivos triângulos retângulos correspondentes. Os triângulos ABC e CDE são semelhantes e têm, respectivamente homólogos os ângulos BCA ˆ e DEC ˆ , bem como os ângulos BAC ˆ e DCE ˆ . Desse modo, pode-se escrever a seguinte proporção: w y z x = yzxw =⇒ . Ora, a área xwR =1 e a área yzR =2 . Então, 21 RR = Resposta: letra a.
    • Prof. Milton Araújo cursoanpad@gmail.com19 Prof. Milton Araújo: Matemático, Engenheiro Eletricista e Mestre em Sistemas pela UFRGS. Atualmente é professor de Matemática Financeira na Universidade Federal do Rio Grande do Sul – UFRGS e de Matemática II (Cálculo Diferencial e Integral) na Fundação Getúlio Vargas - FGV-RS (Decision). Coordenador e professor de Raciocínio Lógico e Quantitativo no Instituto Integral (preparatório para o Teste ANPAD), desde 2002. Há mais de 15 anos atua em cursos preparatórios para concursos públicos. Pesquisador acadêmico (UFRGS) na linha de pesquisa operacional, com modelos matemáticos e computacionais baseados em redes neurais artificiais, algoritmos genéticos e lógica difusa para previsão de demanda de energia elétrica e preços de petróleo. CV Lattes: http://lattes.cnpq.br/4955422465156693 Visite: http://www.institutointegral.com DIREITOS RESERVADOS - Este material encontra-se averbado no Escritório de Direito Autoral (Fundação Biblioteca Nacional). Proíbe-se a reprodução total ou parcial, por qualquer meio, sem a prévia autorização do autor, dada unicamente por escrito. A violação dos direitos autorais (Lei n.º 9.610/98) sujeitará o “contrafator” a ação judicial indenizatória e a processo criminal com penas previstas no art. 184 do Código Penal