Underwater,underground and surface investigation


Published on

The geological structure and the pshysical-mechanical characteristics of the underground play an important role in designing buildings. Using direct methods such as open digging, drilling, sampling for laboratory tests, etc. and indirect geophysical methods, these characteristics can be determined with high precision. This method helps in making resistance and economical calculation.

Published in: Services, Technology
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Underwater,underground and surface investigation

  1. 1. Engineering  topography   For   the   development   of   an   engineering   project   for   construc6on   or   construc6on  rehabilita6on  a  great  importance  and  a8en6on  must  be  given  to   the  projected  cotes  and  to  the  verifica6on  of  the  interest  elements.     •        Precision  land  surveys   •        Situa6on  detailed  plans   •        High  precision  contouring   •        Slope  ver6cally  tracing   •        Labeling  the  site  topographical  network   •        The  assignment  of  the  axes  and  of  the  landmark  contouring   •        Protract  the  important  elements   •        Follow  up  the  6me  schedule  of  the  buildings  construc6on   •        Measurements  for  the  calcula6on  of  the  excava6on  capaci6es   Using  specialized  so=ware  and  equipment,  the  responsible  persons  can  offer   the  required  support  in  accomplishing  the  proposed  objec6ves  of  the  project.   Applica6ons:  
  2. 2. Bathymetrical  inves6ga6ons   The   bathymetry   can   be   taken   for   the   aqua6c   equivalent   of   al6metry.   Being   a   branch  of  hydrometrics,  the  bathymetry  is  dealing  with  the  measurements  of  the   sea  depth,  lakes  and  river  depth,  allowing  us  to  draw  maps  of  their  aqua6c  relief.   Descending  the  depth  measurements  technique  with  the  help  of  the  sonar  and   the   exact   posi6on   given   by   the   GPS   technology,   we   can   dra=   for   you   depth   maps   or   base   relief   structure   maps   for   lakes   or   rivers,   and   also   bathymetric   profiles  on  the  interest  zones.     This  type  of  measurements  has  a  large  applicability  in  various  fields  and  can   contribute  to  a  good  acknowledgement  of  the  geo-­‐morphological  condi6ons:   •          Tracking  down  the  cloging  of  rivers  and  lakes   •          Tracking  down    the  excava6on  from  the  ballast-­‐holes   •          Explora6on  of  the  mineral  aggregates  from  the  river   •          Drawing  the  maps  for  flooding  risks   •          Bathymetric  sec6ons  and  maps     •          Hydrological  studies   Applica6ons:  
  3. 3. Geoelectrical  inves6ga6ons   The  geoelectrical  inves6ga6on  is  one  of  the  main  methods  of  geophysics  with   the   help   of   which   we   can   determinate   the   geological,   hydrological   and   technological  characteris6cs  of  the  underground.   •          Geological  characteris6cs  determina6ons   •          Map  drawing  of  the  contamina6on  spots   •          Infiltra6ons  in    dams  and    dikes   •          Iden6fying  of  the  non-­‐homogenei6es   •          Galleries  and  underground  cavi6es   •          Groundwater  explora6on   •          Iden6fying  the  fissures  and  driKs   •          Buried  pipes   •          Geological  sec6ons     By  adap6ng  a  device,  the  method  can  be  applied  also  on  rivers  or  lakes,  which   allows  us  to  find  out  their  base  structure,  where  the  regular  methods  are  not   able  or  they  are  difficult  to  be  applied.   The  mul6-­‐electrode  method  allows  us  to  scan  the  field  both  in  2D  and  in  3D     the  last  one  being  ideal  for  the  inves6ga6on  of  extended  surfaces.   Applica6ons:   This  method  allows  an    inves6ga6on  depth  which  varies  from  10-­‐30  m  for  the   engineering   projects   and   it   can   go   un6l   300   m   for   the   geological   and   hydrological  researches.  
  4. 4. Magne6cal  and  electromagne6cal    inves6ga6ons   More   than   o=en,   the   loca6ons   of   the   future   buildings   are   full   of   underground   networks  of  pipes,  sewages  or  electrical  wires.  In  order  to  avoid  future  problems   in  the  execu6on  of  the  works    and  very  useful  in  the  design  phase  of  the  project     we  must  take  into  considera6on  the  possible  existence  of  those  networks.   With  the  help  of  magne6cal  measurements  we  are  able  to  iden6fy  all  kind  of   metallic  objects  buried  in  the  underground.           •  Electrical  buried  networks     •  Construc6on  founda6ons   •  Concrete  pipes   •  Unexploded  bombs   •  Metallic  pipes   •  Buried  docks       This  kind  of  inves6ga6ons  can  be  made  both  on  soil  and  lakes  or  rivers.  The   method  is  most  applicable  on  the  vacant  lands,  un-­‐affected  by  the  industrial   environment,  having  a  high  profitableness.   Applica6ons:  
  5. 5. Georadar  inves6ga6ons   GRP   (Ground   Penetra6ng   Radar)   is   an   electromagne6c   method     non-­‐ destruc6ve   which   has   a   large   prac6cability   in   the   industrial   environments   where  the  surface  is  covered  with  concrete.  The  inves6ga6on  depth  depends   on   the   geological   environment   where   the   research   is   located,   and   for   the   engineering  projects  this  depth  is  of  6-­‐8  m.   •  The  analysis  and  the  iden6fica6on  of  the  tunnels   •  Geological  and  hydrological  explora6ons   •  Iden6fying  the  buried  pipes   •  Map  drawing  of  the  contamina6on  spots   •  Iden6fying  the  electrical  buried  cables   •  Iden6fying  the  underground  cavi6es     •  Archeological  researches                 In  par6cular  situa6ons,  depending  on  the  working  condi6ons,  we  can  obtain   3D   images   with   the   interest   zone   allowing   us   to   see   in   detail   the   underground  condi6ons.   Applica6ons:  
  6. 6. Seismic  refrac6on  and  MASW   Seismic   refrac6on   is   a   useful   method   for   inves6ga6ng   geological   structure   and   rock   proper6es.   The   technique   involves   the   observa6on   of   a   seismic   signal  that  has  been  refracted  between  layers  of  contras6ng  seismic  velocity.     •  Stra6graphic  mapping   •  Es6ma6on  of  depth  to  bedrock   •  Es6ma6on  of  depth  to  water  table     •  Predic6ng  the  rippability  of  specific  rock  ypes     •  Loca6ng  sinkholes   •  Landfill  inves6ga6ons   •  Geotechnical  inves6ga6ons     Applica6ons:   Mul6channel  analysis  surface  waves  (MASW)  tests  determine  the  speed   profile  of  Vs  shear  waves,  therefore:     •  Seismic  ac6ons  for  designing  and  verifying  Civil  Engineering  works   •  The  soil  seismic  type  (A,  B,  C,  D,  E,  S1,  S2)   •  The  soil  rigidity  module   •  Sinking  and  displacement  of  works  that  interact  with  the  soil:  buildings,   bridges,  embankment  rises,  suppor6ng  works,  etc..  
  7. 7. Hydrotechnical  projects     The  geophysical  surveys  use  non-­‐destruc6ve  methods  to  allow  extensive   inves6ga6ons  of  various  hydro  technical  projects:     -­‐  Land,  rock  or  concrete  dams     -­‐  Protec6on  dykes     -­‐  Func6onal  dykes   Geoelectrical    –  Using  the  Ver6cal  Electrical  Survey  (SEV),  Electrical  Tomography  or   Mise-­‐a-­‐la-­‐masse,  this  method  has  proven  most  efficient  for  loca6ng  areas  of  water   infiltra6ons  and  for  scanning  the  density  of  the    built-­‐in  material  from  the  dykes  or   dams.       Georadar  (GPR)  –  It  has  a  very  high  resolu6on  and  accuracy  for  areas  made  of   concrete,  loca6ng  holes  and  anomalies  in  the  density  of  the  material  below.         Seismical     –   This   profiling   method   can   accurately   show   data   about   the   homogeneity  of  the  built-­‐in  material  from  dams  or  dykes.       Methods  used:  
  8. 8. Das Verfahren Die elektrischen Eigenschaften des Baugrundes werden über ein künstlich an der Erd- oder Wasseroberfläche erzeugtes elektri- sches Feld, das dem Untergrund über Stromelektroden zugeführt wird, erfaßt. Mittels Meßelektroden wird die sich einstellende Po- tentialdifferenz gemessen und hieraus der scheinbare spezifische elektrische Widerstand berechnet. Zur Ermittlung der Tiefenlage einzelner geologischer Schichten sind eine Reihe von Einzelmes- sungen erforderlich. Hierzu wird der Stromelektroden-Potential- elektroden-Abstand unter Beibehaltung des Auslagenmittelpunk- tes schrittweise so weit vergrößert, bis die gewünschte Informa- tionstiefe erreicht ist. Auf diese Weise wird der scheinbare spezifische elektrische Wi- derstand als Funktion der Elektroden-Abstände und somit als Funktion der Tiefe für den jeweils auf dem Profil festgelegten Meßpunkt ermittelt. Die computerunterstützte Auswertung ergibt schließlich die An- zahl der Schichten, ihre Mächtigkeiten bzw. Tiefenlagen sowie die einzelnen spezifischen elektrischen Schichtwiderstände. M utterboden, stark sandig Feinsand m it Tonanschlämm ung M ittelsand, kiesig, steinig Kies-Sand Kies-Sand, steinig Auffüllung Feinsand Ton und Feinsand, tonig a) Schotter b) Schotter mit Steinen Fluvioglaziale Sedim ente Glaziale Sedim ente a) b) G eoelektrische W iderstandstiefensondierung Projektierte Bohrachse Ton, fest Schluffton a) Schluffton (fest) m it Steinen b) Schluffton (fest) m it erhöhtem Steinanteil b)a) W asser SSW N N E 255 250 245 240 235 230 225 220 215 210 205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 5 Entfernung zum Austrittspunkt (m ) 255 250 245 240 235 230 225 220 215 210 205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 5 -15 -10 -5 0 5 10 15 Höhe(m) -15 -10 -5 0 5 10 15 B 9 B 8 Die Idee Für eine optimale Planung und Durchführung einer Dükerbau- maßnahme ist es erforderlich, möglichst detaillierte Kenntnisse über den Untergrundaufbau im Verlauf der Trasse zu besitzen. Die üblichen Vorerkundungsmethoden unter Einsatz von Ramm- kernsondierungen, Kernbohrungen etc. lassen eine „lückenlose“ Untergrundbewertung im Bereich von Gewässerquerungen, ins- besondere unter Kostengesichtspunkten, nicht zu. Hier bieten sich die klassischen geoelektrischen Verfahren, die bei der La- gerstättenerkundung seit langem routinemäßig eingesetzt wer- den, für die Untersuchung der geplanten Trasse an. Das Ziel der geoelektrischen Verfahren (z.B. Widerstandstiefen- sondierungen) ist die Ermittlung der Verteilung des spezifischen elektrischen Widerstandes im Untergrund. Sie stellt die Grund- lage für die Bestimmung der Mächtigkeit bzw. Tiefenlage einzel- ner geologischer Schichten im Verlauf der geplanten Verlege- trasse dar. Mit den entsprechenden lokalen geologischen Kennt- nissen z.B. aus Bohrungen kann daraus ein geologischer Verti- kalschnitt modelliert werden. 0 2 4 6 8 10 12 m M N4 3 2 1 M N BA A B AB/2 1 2 3 4 5 6 2 3 4 5 7 10 12 m m Tiefe(linearerMaßstab) AB/2(logarithmischerMaßstab) 20 50 100 O hm *m Spez. elktr. Widerstand (logarithm ischer M aßstab) 1 2 3 4 Erdoberfläche 100 Ohm *m 20 Ohm *m Strom linienverteilung im Zw eischichtfall Graphische D arstellung der Sondierungskurve Gem essener scheinb. spez. elektr. W iderstand Spezifischer elektr. W iderstand m Am V Rivers  and  lakes  under-­‐crossing     We   use   specific   geophysical   and   geotechnical   methods   to   obtain   results   which   substan6ally  improve  the  knowledge  about  the  i6nerary  of  rivers  and  lakes  under-­‐ crossings.     Geoelectrical  –  using  Ver6cal  Electrical  Survey  (SEV)  or  Electrical  Tomography,  this   method  has  proven  most  efficient  over  6me  due  to  its  high  precision  rate.       Magne6c  Gradient  –  it  can  be  used  when  we  need  to  locate  the  metallic  items  on   the  i6nerary  of  the  under-­‐crossing.       Georadar   (GPR)   –   this   method   has   a   high   resolu6on   and   can   be   used   in   case   of   shallow  waters  1-­‐3  meters  deep     Land  measurements  –  it  delivers  maps  and  topographic  profiles  needed  in  drawing-­‐ up  the  future  works.       Ba6metry  –  this  inves6gates  the  water  depth,  complemen6ng  the  informa6on  from   the  surface  land  measurements.     Methods  used:  
  9. 9. Infrastructure  projects     As  a  result  of  our  extensive  experience  in  Romania  and  abroad,  we  developed  a   complex  package  of  services  dedicated  to  the  infrastructure  projects  development:   all  types  of  roads,  water  works,  major  pipes,  river  under-­‐crossing.     Topographic  measurements:   •  Vectoriza6on  maps  and  plans   •  3D  modeling  for  large  areas   •  GPS  measurements   •  Situa6on  plans   •  Longitudinal  and  transverse  sec6ons   •  Stakeout  and  ver6caliza6on   •  Accuracy  levelling   Geotechnical  studies:   •  Geotechnical  drilling   •  Dynamic  penetra6on  tests   •  Plate  test   •  Sampling   •  Laboratory  tests   •  Documenta6on   Geophysical  inves6ga6ons:   •  Ver6cal  Electrical  Sounding  (VES)   •  Geoelectrical  profiles   •  Geoelectrical  maps   •  Magne6c  measurements   •  Electromagne6c  measurements  
  10. 10. Mapping  buried  u6li6es  and  other  items     We   use   dedicated   geophysical   methods   to   scan   extensive   areas   in   order   to   locate   underground  items:       • Water  u6li6es–  concrete,  metal  or  PVC   • Electricity    lines–  medium  and  high  voltage     • Buried  pipes  –  water,  gas,  petroleum  products,  etc     • Unexploded  buried  bombs  (  UXO)     The  depth  of  inves6ga6on  varies  from  1  to  6  meters  and  it  depends  on  the  area  under   survey  and  on  the  size  of  the  u6li6es  in  ques6on.  The  methods  are  non-­‐destruc6ve   and  highly  accurate.     Methods  used  for  loca6ng  under  ground  u6li6es:     Georadar  (GPR)  –  it  is  highly  efficient  for  industrial  areas  covered  in  concrete     Magne6c  Gradient  –  this  method  is  efficient  for  loca6ng  u6li6es  buried  under  large   agriculture  fields       Electromagne6c  –  this  is  complemen6ng  the  informa6on  for  the  industrial  areas,  for   metallic  pipes  and  electricity    lines.             We  can  make  such  inves6ga6ons  on  land  or  on  rivers  and  lakes.    
  11. 11. Photovoltaic  parks     We  can  help  you  put  the  basis  of  a  photovoltaic  park  by  acquiring  all  the  needed   informa6on   about   the   characteris6cs   of   the   project   area.   We   perform   measurements  and  surveys  which  allow  a  safer  and  more  efficient  development  of   such  projects  in  any  given  loca6on.       Topographical  surveys:   •  3D  modeling  for  large  areas   •  GPS  measurements   •  Situa6on  plans   •  Stakeout  and  marking   •  Finally  drawing   Geotechnical  studies:   •  Geotechnical  drilling   •  Dynamic  penetra6on  tests   •  Plate  test   •  Sampling   •  Laboratory  tests   •  Documenta6on   Geophysical  inves6ga6ons:   •  UXO  inves6ga6ons   •  Mapping  underground  u6li6es   •  Electrical  Resis6vity  Imaging     •  Seismic  Refrac6on    and  MASW  
  12. 12. Wind  power  parks     The   different   stages   of   a   wind   power   park   project   require   various   studies   and   surveys:  land  measurements,  geotechnical  studies,  geophysical  surveys.     We  have  extensive  experience  in  performing  all  these  services  and  we  can  offer  you   the  best  prices  on  the  market.     Topographic  measurements:   •  3D  modeling  large  areas   •  GPS  measurements   •  Longitudinal  and  transverse  sec6ons   •  Situa6on  plans   •  Stakeout  roads  and  ditches   •  Stakeout  and  plumb  poles   Geotechnical  studies:   •  Geotechnical  drilling   •  Dynamic  penetra6on  tests   •  Plate  test   •  Sampling   •  Laboratory  tests   •  Documenta6on   Geophysical  inves6ga6ons:   •  Seismic  Refrac6on     •  Seismic  Surface  Wave     •  Electrical  Resis6vity  Imaging   •  Ver6cal  Electrical  Sounding  (VES)  
  13. 13. Aerial  photography    Aerial  photography  provides  useful  insights  into  the  development  of  projects  from   the   design   stage,   going   to   execu6on,   inspec6on   and   maintenance.     Using   drones   (UAV)  to  capture  aerial  imagery  brings  extra  flexibility  in  works  approach  with  much   lower  costs  compared  to  conven6onal  aircra=.   Aerial  photography  applica6on:     •             Orthophotomap  and  photogrammetry   •             3D  terrain  model   •             Oblique  and  panoramic  images   •             Electrical  Network  Monitoring   •  Agricultural  and  forestry  inspec6on   •  Mul6spectral  photos   •             Infrared  thermal  photos   •             Industrial  and  residen6al  buildings   •             Wind  farms  and  photovoltaic   •  Construc6on  and  infrastructure  monitoring   •  Monitoring  excava6on  pits   •  Volume  calcula6on  of  excavated  material   deposits   •  Archaeological  photos   •  Communica6on  pathways  mapping  
  14. 14. Geotechnical  studies   Represent  the  first  stage  of  the  construc6on  or  strengthening  of  a  target.  This  kind  of   inves6ga6on   gives   informa6on   about   soil   structure   and   consistence,   groundwater   level  and  provide  recommenda6ons  for  the  technical  project.   Geotechnical  services:     •  Geotechnical  drillings   •  Dynamic  penetra6on  tests   •  Founda6on  uncover   •  Plate  tests   •  Sampling   •  Laboratory  tests   •  Hidrogeological  studies   •  Elabora6on  of  the  documenta6on   The  geological  structure  and  the  physical-­‐mechanical  characteris6cs  of  the  ground   play  an  important  role  in  designing  buildings.  Using  direct  methods  (open  digging,   drilling,   sampling   for   laboratory   tests   etc.),   and   indirect   methods   (geophysical   methods),   determina6on   of   these   characteris6cs   is   done   with   high   precision.   This   method  helps  to  perform  resistance  and  economical  calcula6on.