Your SlideShare is downloading. ×
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

521

Published on

Paul Hauck, Consultor CDM Smith …

Paul Hauck, Consultor CDM Smith

Congreso Andesco de Servicios Públicos y TIC 14º Nacional y 5º Internacional, Cartagena Colombia, Junio 27, 28 y 29 de 2012

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
521
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
25
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. SUSTAINABLE SOLUTIONS FOR THE 21ST CENTURY “Integration of Water Treatment Systems with Energy Derived from Municipal Wastes” Andesco Conference June 27. 2012 Cartagena, Columbia Paul Hauck, P.E. CDM Smith 1715 N. Westshore Boulevard Suite 875 Tampa, Florida 33607 (813) 281-2900 hauckpl@cdmsmith.com
  • 2. Presentation Outline• Introduction• Emerging paradigms• Proven waste conversion technologies• Marriage of WTE and water resources• Emerging waste conversion technologies• Synergistic opportunities 2
  • 3. CDM Smith’s U.S. Waste-to-Energy Experience 3Introduction
  • 4. CDM Smith’s Florida Solid Waste Experience 4Introduction
  • 5. Intended Consequences of theIntegrated Solid Waste Management Hierarchy 5Emerging Paradigms
  • 6. The Three Rs of Recycling…Plus Two! 6Emerging Paradigms
  • 7. Modern Waste-to-Energy (WTE) in the US• WTE disposes of 13% of the nation’s waste (U.S. EPA) – 86 operating facilities – 36 million people served – 27 states – Generation capacity in excess of 2,700 MW – 16 million MWhrs of renewable power generated annually – 259 million tons per year currently disposed of in landfills represents an additional 142,450,000 MWhrs annually (equivalent to 16,261 MW of capacity) • Most WTE facilities sell electricity to the local grid at lower prices than Public Works facilities purchase at commercial rates 7Proven Waste Conversion Technologies
  • 8. WTE Capacity Factor is Among the Highest of Renewable / Fossil Energy Options (24/7/365) • Photovoltaic solar (northern latitudes) 12-15% • Photovoltaic solar (southern latitudes) 18-20% • Wind 20-40% • Thermal solar (parabolic trough) 40% • Natural Gas Combined Cycle 60-80% • Biomass 60-85% • Landfill Gas 80-95% • Baseload Coal 80-90% • Waste-to-Energy (WTE) 85–92% • Hydroelectric 10-99% Capacity Factor = actual kWhrs produced divided by kWhrs that would have been produced if operated at design capacity over same period. 8Proven Waste Conversion Technologies
  • 9. Modern WTE Trends – Improved Efficiency,Attention to Aesthetics and Sustainability •WTE facility expansions and new construction •Attention to aesthetics/LEED®/innovation •More stringent emission limits and GHG reporting Increasing •MSW Higher Heating Value (HHV) •Boiler/T-G availability •Use of reclaimed water for cooling •Gross/net electric generation •Non-ferrous metal recovery •Integrated solid waste management/eco-campus •Resistance to WTE in established communities •Air emissions •Reagent consumption •Water consumption Decreasing •Lower payments for renewable electricity 9Proven Waste Conversion Technologies
  • 10. Dominant WTE Technology in USis Advanced Massburn Combustion• ~75% are massburn facilities• ~ 17% are refuse-derived fuel (RDF) facilities Massburn WTE requires no pre-processing of MSW 10Proven Waste Conversion Technologies
  • 11. Typical Massburn WTE Facility 11Proven Waste Conversion Technologies
  • 12. Typical Massburn WTE Flow Diagram 12Proven Waste Conversion Technologies
  • 13. Refuse Storage Pit at Massburn WTE Facility Typically sized for minimum of 3-days storage, up to 7-days maximum 13Proven Waste Conversion Technologies
  • 14. Efficiency of Massburn WTE TechnologyResults in Minimal Disposal of Residuals Typical WTE Ash Residue • 75% weight reduction • 90% volume reduction 14Proven Waste Conversion Technologies
  • 15. Grizzly Scalper “Overs”(mostly ferrous metal greater than 6-inch size) 15Proven Waste Conversion Technologies
  • 16. Metals Liberated by the Combustion ProcessCan be Recycled for Additional Revenues Ferrous metals Non-ferrous metals everything…including the (aluminum, brass, kitchen sink bronze, copper, gold, silver, stainless) 16Proven Waste Conversion Technologies
  • 17. Typical Non-ferrous Metals …Liberated and Recovered After Combustion Aluminum, brass, bronze, copper, gold, and silver Dense aluminum nuggets 17Proven Waste Conversion Technologies
  • 18. Recovered Products from WTE Bottom Ash (European Experience) 18InAshCo
  • 19. Aluminum Products (light non-ferrous) from WTE Bottom Ash (European Experience) 19InAshCo
  • 20. Heavy non-ferrous products from WTE Bottom Ash (European Expereince) primarily brass and copper 20InAshCo
  • 21. Florida Waste-to-Energy Facilities12 Facilities – 607 MW of Renewable Electricity 21Proven Waste Conversion Technologies
  • 22. Hillsborough County Resource Recovery Facility1,800 TPD – 46 MW Original 1,200-TPD construction: 1987 600-TPD expansion completed: 2009 Compatible with the urban landscape Commercial/industrial development has occurred around facility over 24 years! 22Proven Waste Conversion Technologies
  • 23. Hillsborough County Resource Recovery Facility1,800 TPD – 46 MW (Located Adjacent to WWTP) 8-MGD WWTP (AWTP) 1,800-TPD WTE 23Proven Waste Conversion Technologies
  • 24. Pasco County Resource Recovery Facility1,050 TPD – 30-MW Electrical • Construction: 1989-1991 • $90M capital cost 24Proven Waste Conversion Technologies
  • 25. Pasco County FloridaIntegrated Solid Waste Management Campus 25Proven Waste Conversion Technologies
  • 26. Lee County Resource Recovery Facility1,800 TPD – 58-MW Electrical • Original Construction 1994 • Original construction: 1994 • 636 TPD Expansion Completed 2006 • 636-TPD expansion completed: 2006 26Proven Waste Conversion Technologies
  • 27. Lee County Florida ISWM Campus 27
  • 28. Construction Underway of 3,000-TPD MassburnWTE on Palm Beach County Florida Campus • First new WTE facility in the US in 16 years! • Located adjacent to a 2,000 tpd RDF WTE facility on an Integrated Solid Waste Management CampusProven Waste Conversion Technologies
  • 29. Palm Beach County, FloridaNew 3,000-TPD Massburn WTE RenderingIncorporating Both Sustainability and Aesthetics 29Proven Waste Conversion Technologies
  • 30. Proposed 3,000-TPD Massburn WTE FacilityPalm Beach County, Florida 2012 30Proven Waste Conversion Technologies
  • 31. Palm Beach County, FloridaNew 3,000-TPD Massburn WTE RenderingIncorporating Rainwater Harvest of First 2” of Rain 2 MG 31Proven Waste Conversion Technologies
  • 32. Hennepin County WTE WelcomesMinnesota Twins into the Neighborhood! HERC WTE Facility (1987) Target Field (2010) 32Proven Waste Conversion Technologies
  • 33. Hennepin County WTE Facility…Compatible with the Urban Landscape! Hennepin Energy Recovery Center 33Proven Waste Conversion Technologies
  • 34. Water – Energy NexusWater and Energy are Inextricably Linked!• Water scarcity is the new paradigm for the 21st century!• Lower quality water supply sources require higher levels of treatment• Higher levels of treatment require greater inputs of energy – Pumping from greater depths / distances – Membrane processes require energy for pressure – Advanced disinfection treatments are often electrically derived (ultraviolet light, ozone)• Mutual benefits can be shared between solid waste and water resource departments! 34WTE and Water Resources
  • 35. WTE and WWTP Facilities Make Good Neighbors 12-MGD WWTP (AWTP) 1,800 TPD/46 MW WTE Facility 35WTE and Water Resources
  • 36. Hillsborough County, Florida Utility CampusWTE Integrated with Advanced Wastewater Treatment Plant Municipal Excess Electricity Solid Waste WTE Sold to Grid (~37 MW) Electricity ~2.0 MW Reclaimed ~ 1.1MGD Reclaimed Water Used at WTE Facility Wastewater • Cooling tower makeup ~1.02 MGD • Scrubber dilution water ~ 0.056 MGD • Plant wash down water ~ 0.011 MGD • Equipment cooling water ~ 0.006 MGD • Facility irrigation as needed • Fire Protection as needed Wastewater Reclaimed Water AWTP Distribution System 36 WTE and Water Resources
  • 37. Hillsborough County, Florida Case Study – WTE and WWTP Synergy Currently saving taxpayers an estimated $600,000 a year in energy costs at AWTP 12 mgd AWTP 2 MW~ 5 MW 1,800 tpd WTE FacilityFuture 37 MW Currently Sold to GridAdjacent AWTP powered by energy from WTE (Aug 08), with an additional5 MW soon to be used for other public works and buildings 37 WTE and Water Resources
  • 38. Significant Potential Savings to Public Worksby Using Electricity from WTE Facility Internally Potential Net Savings to Public Works (1,800 TPD WTE with 4 cents / kWh spread) $16.000.000 Potential Annual Savings $14.000.000 Current use Future use of $12.000.000 ~5% of net ~15% of net $10.000.000 generation generation $8.000.000 $6.000.000 $4.000.000 $2.000.000 $- 0 20 40 60 80 100 Percent of Electricity Used Internally 38WTE and Water Resources
  • 39. Additional Public Works Services to be Powered by WTE in Near FutureCurrently Future• WTE • Warehouse• AWTP • Jail• Water • Animal Treatment Services Plant • Elections• Reclaimed Supervisor Water Office Pumps • Environmental Laboratory 39 WTE and Water Resources
  • 40. WTE Integrated with WWTP and WTP Municipal Solid Excess Waste WTE Electricity Sold to Grid Wastewater Electricity Reclaimed water for process and irrigation Wastewater Reclaimed Water WWTP Distribution System Residuals Electricity Reclaimed water for augmented water supply Raw Water Potable Water WTP Distribution SystemWTE and Water Resources
  • 41. WTE Integrated with WWTP (with dewatered biosolids) Excess Electricity Municipal Solid WTE Sold to Grid Waste Discharge biosolidsdirectly into refuse pit or blend with wood chips Wastewater Electricity Reclaimed Water for process and Dewatered irrigation biosolids @ 15-20% solids Wastewater Reclaimed Water WWTP Distribution System WTE and Water Resources
  • 42. WTE Integrated with WWTP (with biosolids dried bysolar and non-thermal means) Municipal Solid Excess Waste WTE Electricity Sold to Grid Wastewater Windrow or Biosolids Electricity Reclaimed water Solar Dryers Drying for process and irrigation Biosolids @ 15- 20% solids Wastewater Reclaimed Water WWTP Distribution SystemWTE and Water Resources
  • 43. WTE Integrated with WWTP (with biosolids dried by heat via steam from WTE facility) Municipal Solid Excess Waste WTE Electricity Sold to Grid Discharge dry biosolids Steam(70 – 95%) directly into Wastewater refuse pit Electricity Reclaimed water for Indirect Biosolids process and irrigation Dryer Drying Biosolids @ 15-20% solids Wastewater Reclaimed Water WWTP Distribution System WTE and Water Resources
  • 44. WTE with WWTP, Anaerobic Digestion (Co-digestion) & Thermal Drying for Fertilizer Production Municipal Solid Electricity Waste WTE Excess Electricity Excess dry Sold to Grid Wastewater Electricity biosolids @ 70- Steam 95% solids Reclaimed Water fordischarged directly process and irrigation into refuse pit Wastewater Reclaimed WWTP WaterExcess Biosolids Distribution Biosolids Biomethane Effluent Fertilizer Thermal Dryer Organic Food Waste Excess Biomethane A/D CNG/LNGFOG / High Strength Wastes (CO-DIGESTION) Soil Amendment WTE and Water Resources
  • 45. 21st Century Sustainable Utility Campus Integration of WTE with Water ResourcesSolid Waste Excess Electricity to Grid WTE Electricity to Utility ComplexSanitary Waste Reclaimed Reclaimed Water to Grid WWTP Water Wet Potable WaterExcess Stormwater to Grid Weather WTP Storage Wells 45WTE and Water Resources
  • 46. Reclaimed Water Storage ReservoirPasco County Florida – Land O’Lakes WWTP Wet Weather Storage Reservoir 500,000,000 gallons of storage constructed in 2009 with 5,000 gpm filtration on withdrawal system 46WTE and Water Resources
  • 47. Estimated Size of Water Resource Treatment Supplied by Electric Power from 1,000 TPD EfW 350 330 300Million Gallons / Day 250 200 165 150 99 100 50 40 50 7 0 WTP AWWTP @ WTP Brackish WTP Seawater WRF Membrane WTP Thermal Conventional @ 3,000 kWh per Membrane @ Membrance @ Direct Potable Distillation @ 1,500 kWh per MG 5,000 kWh per 10,000 kWh per Reuse @ 12,500 75,000 kWh per MG MG MG kWh per MG MG 47 WTE and Water Resources
  • 48. Wastewater Treatment Plants Can Be Viewed As Water/Biosolids/Energy Resource Centers WTE Solar and Wind Organic Waste Energy (Heat, Power)Wastewater Biosolids & Nutrients (Fuel & Fertilizer) Reclaimed Water 48 Synergistic Opportunities
  • 49. Campus for Management of Solid Waste, Recycling, and Water Resources Reclaimed Water Recycled Potable Water Wastewater Yard & Wood Products Biosolids Compost Facility Treatment Plant Treatment Plant Waste Processing • compost • mulch Electricity • soil amendment ~ Compressed Air Biosolids Shredded Yard Excess Electricity Combustibles & Wood Waste •Chipped Tires Cooling & Fire Protection •Chipped Wood Used Tire / Bulky Waste • tire derived fuel ~ Wood & Yard Waste • crumb rubber Resizing Facility Electricity Low Pressure Steam & Compressed Air WTE Waste-to-Energy ~ Combustibles Construction & Demolition Debris Processing Facility • sand • crushed asphalt M Not Requiring • crushed concrete Concrete Resizing Gravel Crushed Sand, • metals Rejects M Ash • metals M Steam Residue WTE Ash • recycled ash Landfill Leachate to WWTP Processing Landfill Gas & Mined - LF daily cover Combustible Rejects M Loop for M Electricity ~ Facility Combustibles - road base Industrial Park Tenants Rejects • plastics M Electricity MRF • glass ~ • paper M • cardboard Landfill Gas • metalsReclaimedWater Reuse Closed C&D / Inert Active Landfill Ash Monofill Landfill Landfill 49 Synergistic Opportunities
  • 50. STATE EMERGING (Higher Risk) PROVEN (Lower Risk) ofTECHNOLOGY PILOT SCALE DEMONSTRATION MARKET ENTRY MARKET MARKET PENETRATION MATURITY Biomass Co-firing Fluidized Direct (utility Stoker Bed Combustion boilers) Small Gasifier/ IC Engine Biomass Gasification Gasification – & Pyrolysis Boilers, Kilns Pyrolysis and Depolymerization Massburn WTE & Other Conversion Processes 1 Waste-to- RDF Combustion2 Energy Co- Digestion Anaerobic Digestion 1. Includes RDF gasification, plasma gasification, and pyrolysis 2. RDF = Refuse-derived fuel 50Emerging Waste Conversion Technologies
  • 51. Emerging Waste Conversion Technologies(None Yet Commercially Demonstrated in US)Thermal Processes• Gasification (thermal, plasma, with or without vitrification)• Pyrolysis / Torrifaction of biomassBio – Chemical Processes• Anaerobic Digestion (co-digestion of WWTP biosolids and organic wastes)• Waste-to-Biofuels (ethanol, methanol, other alcohols)• Depolymerization (synthetic diesel and gasoline) 51 Emerging Waste Conversion Technologies
  • 52. Biomass-to-Ethanol Production Pathways Grain Starch Fermentation Material Cane Handling Alcohol Alcohol Sugar & Refining Refining Processing Biomass Cellulose Gasification 52Emerging Waste Conversion Technologies
  • 53. Ineos Waste-to-Biofuel Project StatusIndian River County, Florida• CDM Smith supporting role – DOE grant application: $50M awarded in 2009 – Prepared NEPA compliance/environmental permit applications – Civil site/facility infrastructure design• Anticipated startup 3Q 2012 with full production by 4Q 2012 53Emerging Waste Conversion Technologies
  • 54. Thank You for the Opportunity to Share…and Imagineer! Paul Hauck, P.E. CDM Smith 1715 N. Westshore Boulevard, Suite 875 Tampa, Florida 33607 (813) 281-2900 hauckpl@cdmsmith.com 54Conclusion
  • 55. Extra Slides
  • 56. Historical Emission Trends from Large and SmallMunicipal Waste CombustorsPollutant 1990 Emissions 2005 Emissions Percent Reduction (TPY) (TPY)CDD/CDF TEQ Basis * 44 15 99+%Mercury 57 2.3 96%Cadmium 9.6 0.4 96%Lead 170 5.5 97%Particulate Matter 18,600 780 96%HCL 57,400 3,200 94%SO2 38,300 4,600 88%NOx 64,900 49,500 24%Source: EPA, August 2007* Dioxin/furan emissions are in units of grams per year toxic equivalent quantity (TEQ), using1989 NATO toxicity factors; all other pollutant emissions are in units of tons per year 56Proven Waste Conversion Technologies
  • 57. Hillsborough County, Florida Case StudyHillsborough County integrated solid waste management system• 1,800 tpd Resource Recovery Facility (EfW)• Two Transfer Stations with citizen drop off facilities for bulky waste, white goods, yard and wood waste• Central processing facility for yard and wood waste (recycled as mulch, soil amendment or biomass fuel)• Community Collection Centers (5) for drop off of solid waste materials• Household Chemicals and Electronics Collection Centers (3) for citizen drop of materials (not available to commercial customers)• Waste Tire Processing Program (shredded into chips <2” in size) for recycling as alternate daily cover or supplemental fuel at the EfW facility• Class I raw waste landfill (179 acres)• Collection services are provided by three private franchised contractors throughout the unincorporated areas of the County: – Residential collection of solid waste twice a week – Residential collection of yard waste once a week – Residential collection of curbside recyclables once a week (cardboard, newspaper, and mixed paper; plastic and glass bottles, steel and aluminum containers)• Posted FY 2011 full costs for the Solid Waste Management System are: – Residential collection: $136.23 / HH / year – Residential disposal: $94.94 / HH / year – Residential recycling: $10.89 / HH / year – Landfill disposal tipping fee: $63.96 / ton – Tire disposal: $82.61 / ton – Yard and wood waste disposal: $31.52 / ton
  • 58. Hillsborough County RRF Fuels Unacceptable Fuels Acceptable Fuel Lead acid batteries Confidential documents Hazardous waste Contraband Nuclear waste Wood pallets Radioactive waste Used tires (up to 3% monthly) Sewage sludge C&D debris Grease, scum, and grit Oil spill cleanup, used oil filters and motor oil Explosives, beryllium containing Items suitable for human, plant, and wastes, asbestos floor covering animal consumption (foodstuffs, feeds, pharmaceuticals) 58
  • 59. Trend of MSW Higher Heating Value (HHV)at Hillsborough County Florida EfW 59
  • 60. Hillsborough County Florida EfWFY 2011 Environmental Performance 60
  • 61. Hillsborough County Florida EfWFY 2011 Environmental Performance 61
  • 62. Hillsborough County Florida EfWFY 2011 Environmental Performance 62
  • 63. Hillsborough County Florida EfWFY 2011 Environmental Performance 63
  • 64. Hillsborough County Florida EfWFY 2011 Environmental Performance 64
  • 65. Hillsborough County Florida EfWFY 2011 Environmental Performance 65
  • 66. Hillsborough County Florida EfWFY 2011 Environmental Performance 66
  • 67. Hillsborough County Florida EfWFY 2011 Environmental Performance 67
  • 68. Estimated Value of WTE Carbon Offsets Based upon WTE availability of 90%, 0.25 ton CO2e/ ton MSW, and $10.00 per ton CO2e$3.000.000$2.500.000$2.000.000$1.500.000$1.000.000 $500.000 $- 0 500 1000 1500 2000 2500 3000 Size of WTE Facility (tons per day) 68WTE Massburn Economics
  • 69. Estimated Cost of Electricity from Massburn WTE Cost of Electricity Without Tipping Fee $0,250 $0,200$ / Wwh $0,150 $0,100 $0,050 $- 0 500 1000 1500 2000 2500 3000 3500 WTE Facility Size (TPD) WTE Massburn Economics
  • 70. US Massburn WTE Capital Cost History $600.000 Existing Facility PBC New WTE $500.000 Proposed Proposal($ per Ton per Day Capacity) RDF Prices $400.000 Capital Cost $300.000 Winning $200.000 price $100.000 $- 1975 1980 1985 1990 1995 2000 2005 2010 2015 Start of ConstructionWTE Massburn Economics
  • 71. Water Consumption:Wet versus Dry Cooling SystemsAir Cooled Condenser
  • 72. City of Tampa Energy from Waste Facility1,000 TPD – 22.5 MW • Original construction: 1975 • Rebuilt as EfW: 1985 • Retrofit for CAAA: 1998-2001 Portions of this facility are 35 years old and on their third life! 72 Proven Waste Conversion Technologies
  • 73. Pinellas County Resource Recovery Facility3,000 TPD – 75-MW Electrical Output • Original construction: 1985 • 1,000-TPD expansion: 1987 This facility is 27 years old and recently refurbished 73Proven Waste Conversion Technologies
  • 74. WWTP, Biosolids, and Power Also Integratedinto Pasco County ISWM Campus ASH MONOFILL WTE SCALES MRF Peaking Biosolids Stabilization Power Plant WWTP (4 mgd) 74Proven Waste Conversion Technologies
  • 75. Palm Beach County, FloridaProposed Visitors Center 75Proven Waste Conversion Technologies
  • 76. PBC New WTE Project – Sustainability OptionsRecycled Water Supply SourcesProven Waste Conversion Technologies
  • 77. PBC New WTE Project (2012)Continuing the Trend to Lower Emission Limits Emission Unit US EPA MACT PBC WTE Permit Limit Units Mg/dscm 7% O2Particulate 20 12Cadmium 0.010 0.010Lead 0.140 0.125Mercury 0.050 0.025Sulfur Dioxide 30 24Hydrogen Chloride 25 20Carbon Monoxide (4 hr) 100 100Nitrogen Oxide (24 hr) 150 50Nitrogen Oxide (annual) 90 45*Dioxin/Furan ** 13 10**ng/dscm 7%O2 * MonthProven Waste Conversion Technologies
  • 78. Potential Annual Net Savings to Public Works@ 4 Cents/kWh Spread $30.000.000Potential Annual Savings 500 TPD WTE $25.000.000 1000 TPD $20.000.000 WTE 1500 TPD $15.000.000 WTE 2000 TPD WTE $10.000.000 2500 TPD WTE $5.000.000 3000 TPD WTE $- 0 20 40 60 80 100 Percent of WTE Electricity Used Internally 78WTE and Water Resources
  • 79. Municipal Utility Campus – Energy from WasteWTE Integrated with WWTP (without biosolids) Municipal Solid Excess Electricity Waste WTE Sold to Grid Wastewater Electricity Reclaimed Water for process and irrigation Wastewater Reclaimed Water WWTP Distribution SystemSynergistic Opportunities
  • 80. Pasco County Southeast WWTP Reclaimed Water Reservoir Filtration Skid• 5,000 GPM Filtration Skid• Two parallel arrays of “turbo-disc” filter cartridges• Backwash discharged to ??? 80 WTE and Water Resources
  • 81. Palm Beach County, FloridaRegional Biosolids Processing Facility 81Synergistic Opportunities
  • 82. Municipal Utility CampusOptimizing Energy and Water Production Water and electricity production can be varied by time of day to meet peak demands Electricity Water Water Electricity Water Water Production Production Electricity Electricity Off Peak Peak Electric Off Peak Demand Time of Day 82WTE and Water Resources
  • 83. Future WTE Plants Can Include Addition ofMaterial Recovery and Recycling ProcessesOptions for Recycling: Options for WTE1. Single Stream MRF Basement Area:2. Multi Stream MRF 1. Maintenance Shop3. Mixed Waste MRF 2. Ash Processing4. C&D Recycling 3. Special Recycling Recycling WTE Waste Basement Basement Area Recycling Processes Tipping Building Refuse Building Boiler Building Air Pollution Control Bldg. Stack 83Synergistic Opportunities
  • 84. Site Layout for FutureIntegrated Solid Waste Management System (Massburn WTE with Anaerobic Digestion, Composting, C&D Recycling, and E-Waste Recycling) Fabric Fabric Stack Fabric Fabric Filter Filter Filter Filter Electrical Switchyard Fly Ash Conveyor SDA SDA SDA SDA Ash Processing Bottom Ash Building Turbine-Generator Combustor Combustor Combustor Combustor Conveyor Building No. 1 No. 2 No. 3 No. 4 Food Admin Control Municipal Solid Waste Waste Offices Room Refuse Pit Pit SDA Anaerobic Digestion Maintenance & Warehouse Elevated MSW Tipping Floor/Building Facility SDA Building Compost Facility Below Entrance Ramp Exit Ramp E-Waste C&D Recycling Building RecyclingSynergistic Opportunities
  • 85. US Department of EnergyOffice of Energy Efficiencyand Renewable Energy 2005 New Industry – BioRefinery PRODUCTS Fuels: – Ethanol – Renewable Diesel – Renewable Gasoline – Hydrogen S U Power: G – Electricity A – Heat (co-generation) R Chemicals or – Plastics – Solvents H – Chemical Intermediates Y Biomass D Conversion – Phenolics R – Adhesives Feedstock O Processes – Furfural C – Fatty Acids – Trees A – Acetic Acid R – Enzymatic Fermentation – Carbon Black – Grasses – Gas/Liquid Fermentation B – Paints – Agricultural Crops O – Acid Hydrolysis/Fermentation – Dyes, Pigments, and Ink – Agricultural Residues N – Gasification – Detergent S – Etc. – Forest Residues – Pyrolysis – Animal Wastes Food, Feed, Fuel, – Combustion – Municipal Solid Waste Fiber, & Fertilizer – Co-firing 85 Emerging Waste Conversion Technologies
  • 86. Only Time Will Tell…Enhanced Revenues of Ethanol from MSW• Potentially 2-3 times the revenue stream of electricity 86Emerging Waste Conversion Technologies

×