Your SlideShare is downloading. ×
0
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Lec47
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,816
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
27
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Control of Renal Calcium Excretion and Extracellular Calcium Ion Concentration
    The total calcium in the plasma 5 mEq/L
    Ca ion activates the sliding filament mechanism and essential factor in blood clotting
    About 50 per cent of the plasma calcium is ionized, with the remainder being bound to the plasma proteins or complexed with anions such as phosphate
    About 50 per cent of the plasma calcium can be filtered at the glomerulus
  • 2. When calcium ion concentration falls to low levels (hypocalcemia), the excitability of nerve and muscle cells increases markedly and can in extreme cases result in hypocalcemic tetany
    Hypercalcemia depresses neuromuscular excitability and can lead to cardiac arrhythmias
  • 3. One of the most important regulators of bone uptake and release of calcium is PTH
    The parathyroid glands are directly stimulated by the low calcium levels to promote increased secretion of PTH
    PTH regulates plasma calcium concentration through
    (1) by stimulating bone resorption
    (2) by stimulating activation of vitamin D in the kidneys
    (3) by directly increasing renal tubular calcium reabsorption
  • 4. Compensatory responses to decreased plasma ionized calcium concentration mediated by parathyroid hormone and vitamin D
  • 5. Factors that alter renal calcium excretion
  • 6. Phosphate excretion by the kidneys
    Plasma phosphate concentration is usually maintained at about 4 mEq/L
    The renal tubules have a normal transport maximum for reabsorbing phosphate of about 0.1 mM/min
    Parathyroid hormone regulate phosphate concentration through:
    (1) PTH promotes bone resorption, thus dumping large amounts of phosphate ions into the extracellular fluid from the bone salts
    (2) PTH decreases the transport maximum for phosphate by the renal tubules, so that a greater proportion of the tubular phosphate is lost in the urine
  • 7. Integration of Renal Mechanisms for Control of Extracellular Fluid
    Extracellular fluid volume is determined mainly by the balance between intake and output of water and salt
    When ADH-Thirst mechanisms are functioning normally a change in the amount of sodium chloride in the extracellular fluid is matched by a similar change in the amount of extracellular water, so that osmolarity and sodium concentration are maintained constant
  • 8. Sodium Excretion Is Controlled by Altering Glomerular Filtration or Tubular Sodium Reabsorption Rates
    The two variables that influence sodium and water excretion are the rates of filtration and the rates of reabsorption:
    Excretion = Glomerular filtration – tubular reabsorptionGFR normally is about 180 L/day, tubular reabsorption is 178.5 L/day, and urine excretion is 1.5 L/day
    Tubular reabsorption and GFR usually are regulated precisely, so that excretion by the kidneys can be exactly matched to intake of water and electrolytes
  • 9. If the kidneys become greatly vasodilated and GFR increases, this raises sodium chloride delivery to the tubules, which in turn leads to
    (1) increased tubular reabsorption of much of the extra sodium chloride filtered, called glomerulotubular balance
    (2) macula densa feedback, in which increased sodium chloride delivery to the distal tubule causes afferent arteriolar constriction and return of GFR toward normal
  • 10. Neither of these two mechanisms operates perfectly to restore distal sodium chloride delivery back to normal
    When this happens other feedback mechanisms such as changes in blood pressure and changes in various hormones, that eventually return sodium excretion to equal sodium intake
  • 11. Importance of Pressure Natriuresis and Pressure Diuresis in Maintaining Body Sodium and Fluid Balance
    One of the mechanisms for control of blood volume and extracellular fluid volume, as well as for the maintenance of sodium and fluid balance, is the effect of blood pressure on sodium and water excretion-called the pressure natriuresisand pressure diuresismechanisms, respectively.
  • 12. Pressure diuresis refers to the effect of increased blood pressure to raise urinary volume excretion
    Pressure natriuresis refers to the rise in sodium excretion that occurs with elevated blood pressure
  • 13. Pressure Natriuresis and Diuresis Are Key Components of a Renal-Body Fluid Feedback for Regulating Body Fluid Volumes and Arterial Pressure
    The extracellular fluid volume, blood volume, cardiac output, arterial pressure, and urine output are all controlled at the same time as separate parts of this basic feedback mechanism
    This feedback mechanism helps to maintain fluid balance and to minimize changes in blood volume, extracellular fluid volume, and arterial pressure as follows:
  • 14. An increase in fluid intake above the level of urine output causes a temporary accumulation of fluid in the body
    As long as fluid intake exceeds urine output, fluid accumulates in the blood and interstitial spaces, causing parallel increases in blood volume and extracellular fluid volume
    An increase in blood volume raises mean circulatory filling pressure
    An increase in mean circulatory filling pressure raises the pressure gradient for venous return
  • 15. An increased pressure gradient for venous return elevates cardiac output
    An increased cardiac output raises arterial pressure
    An increased arterial pressure increases urine output by way of pressure diuresis
    The increased fluid excretion balances the increased intake, and further accumulation of fluid is prevented
  • 16.
  • 17. The renal-body fluid feedback mechanism operates to prevent continuous accumulation of salt and water in the body during increased salt and water intake
    As long as kidney function is normal and the pressure diuresis mechanism is operating effectively, large changes in salt and water intake can be accommodated with only slight changes in blood volume, extracellular fluid volume, cardiac output, and arterial pressure
  • 18. Sympathetic Nervous System Control of Renal Excretion
    Changes in sympathetic activity can alter renal sodium and water excretion as well as regulation of extracellular fluid volume under some conditions
    When blood volume is reduced by hemorrhage, the pressures in the pulmonary blood vessels decrease causing activation of the sympathetic nervous system
  • 19. Effects of increases renal sympathetic nerve activity
    (1) constriction of the renal arterioles, with resultant decreased GFR
    (2) increased tubular reabsorption of salt and water
    (3) stimulation of renin release and increased angiotensin II and aldosterone formation, both of which further increase tubular reabsorption
    Sympathetic Nervous System Control of Renal Excretion
  • 20. Role of Angiotensin II In Controlling Renal Excretion
    When sodium intake is elevated above normal, renin secretion is decreased, causing decreased angiotensin II formation, thus increasing the kidneys' excretion of sodium and water
    The net result is to minimize the rise in extracellular fluid volume and arterial pressure that would otherwise occur when sodium intake increases
    Changes in activity of the renin-angiotensin system act as a powerful amplifier of the pressure natriuresis mechanism for maintaining stable blood pressures and body fluid volumes.
  • 21. Role of Aldosterone in Controlling Renal Excretion
    Aldosterone increases sodium reabsorption, especially in the cortical collecting tubules
    The increased sodium reabsorption is also associated with increased water reabsorption and potassium secretion
    The net effect of aldosterone is to make the kidneys retain sodium and water but to increase potassium excretion in the urine
  • 22. The function of aldosterone in regulating sodium balance is closely related to that of angiotensin II
    Reduction in sodium intake, the increased angiotensin II levels that occur stimulate aldosterone secretion, which in turn contributes to the reduction in urinary sodium excretion and, therefore, to the maintenance of sodium balance
    Role of Aldosterone in Controlling Renal Excretion
  • 23. Role of ADH in Controlling Renal Water Excretion
    High levels of ADH increase water reabsorption by the kidneys and help to minimize the decreases in extracellular fluid volume and arterial pressure that would otherwise occur
  • 24. Water deprivation for 24 to 48 hours normally causes only a small decrease in extracellular fluid volume and arterial pressure. If the effects of ADH are blocked with a drug that antagonizes the action of ADH, the same period of water deprivation causes a substantial fall in both extracellular fluid volume and arterial pressure
    Role of ADH in Controlling Renal Water Excretion
  • 25. Role of Atrial Natriuretic Peptide in Controlling Renal Excretion
    Atrial natriuretic peptide (ANP), released by the cardiac atrial muscle fibers
    The stimulus for release of this peptide is overstretch of the atria, which can result from excess blood volume
  • 26. ANP cause small increases in GFR and decreases in sodium reabsorption by the collecting ducts
    These combined actions of ANP lead to increased excretion of salt and water, which helps to compensate for the excess blood volume
    Role of Atrial Natriuretic Peptide in Controlling Renal Excretion

×