Social Research Tools


Published on

Published in: Education, Technology, Design
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • You can compare search as well as comparative search volume patterns across specific regions, categories, time frames and properties used in an exploratory research about the image of Liverpool as European Capital of Culture in online environments Results provided by google not only showed variation in volume of searches based on variables we introduced (we chose from worldwide, Europe and UK, or selected various timeframes) but it also showed related searches and rising searches
  • This search showed which was the public’s preference for a search term It helped establish a potential correlation between the popularity of the opening and closing ceremonies and the rise of the searches. By comparing the data with the schedule of the event, the rise in searches also drew attention to specific dates/events within the Liverpool Capital of Culture celebration. For communicators this information can be useful for future strategic planning such as choosing the name of an event, linking it with different events… Where ‘breakout’ is listed instead of a percentage, this means that the ‘search term has experienced a change in growth greater than 5000%.’ Over the 2008 period, key events to interrupt the dominance of football within Google searches were the Liverpool Echo Arena, Liverpool One, Liverpool 2008, Liverpool Sound, the Tall Ships, the Klimt Exhibition and the Spider(LaPrincesse).
  • TweetStats - personal statistics - can be applied to any user - helps compare patterns of twitter use; also shows twitter user cloud, and the day’s top 10 trends and currently trending topics TweetVolume - volumetric searches for keywords (similar to google insights but twitter specific - results resume to volume only - it is unclear for how long the searches span and how they are gathered) TwitterAnalyzer - so far the most complex tool Twinfluence - influence of users (calculates influence according to reach, velocity and social capital ) - measures the combined influence of users and their followers (the project so far that has a very research approach to what it does) TweetEffect - similar to Twinfluence but looks at gain/loss of followers and correlates it with tweets (also generates graph of variation in time) Twendz - a beta project supported by a PR agency Twitscoop - highlightz buzzing words, trending topics, and allows searches Trendsmap - allows monitoring twitter based on geographic location of tweeterers Tweetpad - a canadian project - software used to visualize Twitter feeds in a new, dynamic fashion. The idea is to not only be on the receiving end of these feeds but to be able to manipulate them; to react and to interact with what we are reading. This is done by deconstructing the text: scrambling the letters or words, breaking sentences apart, replacing words,combining multiple entries into one, etc
  • Twinfluence calculates two types of ranks - one assigning an absolute rank (#1!) compared to all analyzed twitterers to date, and one that assigns a value and category relative to other twitterers that have more or less the same number of followers as you. Imagine Twitterer1, who has 10,000 followers - most of which are bots and inactives with no followers of their own. Now imagine Twitterer2, who only has 10 followers - but each of them has 5,000 followers. Who has the most real "influence?" Twitterer2, of course.
  • Social Research Tools

    1. 1. (New!) Media Research Tools Ana ADI
    2. 2. About the lecturer <ul><li>Academic background </li></ul><ul><ul><li>BA in Communication and Public Relations (Bucharest, Romania) </li></ul></ul><ul><ul><li>MA in Management and Business Communication (Bucharest, Romania) </li></ul></ul><ul><ul><li>MA in Strategic Communication (University of Missouri, USA, Fulbright scholar) </li></ul></ul><ul><ul><li>Currently PhD candidate at the University of the West of Scotland (UK) </li></ul></ul><ul><li>Former clients </li></ul><ul><ul><li>Romania: Coca-Cola, LaborMed Pharma, Kandia </li></ul></ul><ul><ul><li>USA: Hallmark Cards, Albert Honda, Television Bureau of Advertising </li></ul></ul><ul><ul><li>Brazil: hOw (help Our world) </li></ul></ul><ul><ul><li>Belgium: Netlog </li></ul></ul>
    3. 3. Why online tools? <ul><li>Exploratory </li></ul><ul><li>Experimental </li></ul><ul><li>Simple to use </li></ul><ul><li>Fast results </li></ul><ul><li>Simple questions </li></ul><ul><li>Platform specific </li></ul><ul><li>Free </li></ul>
    4. 4. Who should use them? <ul><li>Researchers/Academics </li></ul><ul><ul><li>for exploratory purposes to lead to more complex research projects </li></ul></ul><ul><li>Communicators (PR/Marketing/Journalism) </li></ul><ul><ul><li>To monitor sentiment, emerging trends, coverage, interest </li></ul></ul><ul><ul><li>To analyze leads </li></ul></ul><ul><ul><li>To find influencers </li></ul></ul><ul><ul><li>To explore relationships </li></ul></ul><ul><ul><li>To establish communication patterns </li></ul></ul>
    5. 5. What we’ll be looking at:
    6. 6. <ul><li>Shows evolution of searches (volume) </li></ul><ul><ul><li>Individual </li></ul></ul><ul><ul><li>Comparative </li></ul></ul><ul><li>Variables </li></ul><ul><ul><li>Web/Image/News/Product </li></ul></ul><ul><ul><li>Geographical </li></ul></ul><ul><ul><li>Time </li></ul></ul><ul><ul><li>Categories </li></ul></ul><ul><li>Anticipate demand </li></ul><ul><li>Find search patterns </li></ul><ul><li>Discover related searches </li></ul><ul><li>Observe distribution of users </li></ul>
    7. 9. <ul><li>Analytics </li></ul><ul><li>Trends </li></ul><ul><li>Exploratory </li></ul>
    8. 10. <ul><li>Evolution of an account Twitter use </li></ul><ul><ul><li>Per hour </li></ul></ul><ul><ul><li>Per month </li></ul></ul><ul><ul><li>Timeline </li></ul></ul><ul><ul><li>Reply statistics </li></ul></ul><ul><li>Trends </li></ul><ul><ul><li>Top 10 </li></ul></ul><ul><ul><li>Currently trending </li></ul></ul><ul><li>User productivity </li></ul><ul><li>User activity patterns </li></ul><ul><li>Find emerging trends </li></ul>
    9. 12. <ul><li>Comparative Volume </li></ul><ul><ul><li>Keyword input </li></ul></ul><ul><ul><li>BUT </li></ul></ul><ul><ul><ul><li>No information on methodology (timeframe, refresh, data source) </li></ul></ul></ul><ul><li>Graph volume </li></ul>
    10. 14. <ul><li>Estimate potential connections </li></ul><ul><li>Measure potential audience </li></ul><ul><li>Assess network strength and inner network dependencies </li></ul><ul><li>Measures influence </li></ul><ul><ul><li>Absolute rank </li></ul></ul><ul><ul><li>Value and category </li></ul></ul><ul><li>Derived statistics </li></ul><ul><ul><li>Velocity </li></ul></ul><ul><ul><li>Social capital </li></ul></ul><ul><ul><li>Centralization </li></ul></ul><ul><li>+ a very academic approach </li></ul><ul><ul><li>Also check: </li></ul></ul>
    11. 15. <ul><li>User statistics </li></ul><ul><ul><li>Varied data pool queries </li></ul></ul><ul><ul><ul><li>Popularity (based on mentions) </li></ul></ul></ul><ul><ul><ul><li>Reach (user exposure) </li></ul></ul></ul><ul><ul><ul><li>Followers growth rate </li></ul></ul></ul><ul><ul><ul><li>Online followers </li></ul></ul></ul><ul><ul><ul><li>Density map </li></ul></ul></ul><ul><li>User productivity </li></ul><ul><li>User influence </li></ul><ul><li>User interaction </li></ul>
    12. 17. <ul><li> </li></ul>
    13. 18. <ul><li>Evolution of tweets in time (24hrs, 7 days, 30 days) </li></ul><ul><ul><li>Individual </li></ul></ul><ul><ul><li>Keyword comparison </li></ul></ul><ul><li>Shows tweets </li></ul><ul><li>Anticipate interest </li></ul><ul><li>Observe evolution of interest </li></ul><ul><li>Compare activity </li></ul><ul><li>Comparative studies with context integration </li></ul>
    14. 20. <ul><li>Network analysis </li></ul><ul><ul><li>Require login </li></ul></ul><ul><ul><li>Require user approval </li></ul></ul><ul><li>Show and analyze </li></ul><ul><ul><li>Network affiliation </li></ul></ul><ul><ul><li>Network dynamics </li></ul></ul><ul><ul><li>Gender distribution </li></ul></ul><ul><ul><li>Relationship distribution </li></ul></ul><ul><ul><li>User relationship </li></ul></ul>
    15. 21. TouchGraph
    16. 22. Friend Wheel
    17. 23. Social Graph
    18. 24. Caution <ul><li>Many of the platforms shown are in Beta testing </li></ul><ul><ul><li>Exploratory </li></ul></ul><ul><ul><li>Experimental </li></ul></ul><ul><ul><li>Not yet adopted by academia and research communities </li></ul></ul><ul><ul><li>Data needs correlation </li></ul></ul><ul><ul><li>Data needs verification </li></ul></ul><ul><li>Used for rather short-time spans and amounts of data </li></ul><ul><ul><li>Hope to help predict trends, understand fluctuation of “emotion” </li></ul></ul>
    19. 25. <ul><li>Thank you! </li></ul>