Channel allocation and routing in hybrid multichannel multiradio wireless mesh

  • 189 views
Uploaded on


Bulk Projects For sale

IEEE 2009-10-11-12-13 PAPERS AVILABLE.

We are providing low cost project for final year student projects.

Solved 2010 -2011 -2012 - 2013 IEEE in all the domain

Mobile : 8940956123

E-Mail : ambitlick@gmail.com,

INNOVATIVE TITLES ARE ALSO WELLCOME TO DO WITH US


For All BE/BTech, ME/MTech, MSC/MCA/MS , and diplamo graduates

PROJECT SUPPORTS & DELIVERABLES

•Project Abstract
•IEEE Paper
•PPT / Review Details
•Project Report
•Working Procedure in Video
•Screen Shots
•Materials & Books in CD
•Project Certification

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
189
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
3
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Ambit lick Solutions Mail Id: Ambitlick@gmail.com , Ambitlicksolutions@gmail.Com Channel Allocation and Routing in Hybrid Multichannel Multiradio Wireless Mesh Networks Many efforts have been devoted to maximizing network throughput in a multichannel multiradio wireless mesh network. Most current solutions are based on either purely static or purely dynamic channel allocation approaches. In this paper, we propose a hybrid multichannel multiradio wireless mesh networking architecture, where each mesh node has both static and dynamic interfaces. We first present an Adaptive Dynamic Channel Allocation protocol (ADCA), which considers optimization for both throughput and delay in the channel assignment. In addition, we also propose an Interference and Congestion Aware Routing protocol (ICAR) in the hybrid network with both static and dynamic links, which balances the channel usage in the network. Our simulation results show that compared to previous works, ADCA reduces the packet delay considerably without degrading the network throughput. The hybrid architecture shows much better adaptivity to changing traffic than purely static architecture without dramatic increase in overhead, and achieves lower delay than existing approaches for hybrid networks.