Mixing Computer-Assisted Translation and Machine Translation

2,200 views
2,083 views

Published on

Curious to learn more about how much a translator could really benefit from this daunting combination, Cris Silva and Giovana Boselli conducted an experiment in which we combined machine translation and translation memory. This slide discusses our process and statistics in an attempt to provide translation and localization professionals with some empirical information on the combined use of machine translation and computer-assisted translation.

1 Comment
4 Likes
Statistics
Notes
  • The good, the bad and the ugly
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
2,200
On SlideShare
0
From Embeds
0
Number of Embeds
134
Actions
Shares
0
Downloads
0
Comments
1
Likes
4
Embeds 0
No embeds

No notes for slide

Mixing Computer-Assisted Translation and Machine Translation

  1. 1. MIXING COMPUTER-ASSISTED TRANSLATION AND MACHINE TRANSLATION: THE GOOD, THE BAD AND THE UGLY
  2. 2. THE ISSUE <ul><li>Can we combine TM and MT? </li></ul>Copyright 2008 Cris Silva and Giovana Boselli
  3. 3. OUTLINE <ul><li>Our story </li></ul><ul><li>How MT and TM can work together </li></ul><ul><li>Defining MT and TM systems </li></ul><ul><li>Our 14-step experiment </li></ul><ul><li>Final considerations </li></ul>Copyright 2008 Cris Silva and Giovana Boselli
  4. 4. COMPUTER-ASSISTED TRANSLATION <ul><li>Spellcheckers </li></ul><ul><li>Grammar checkers </li></ul><ul><li>Dictionaries on CD-ROM </li></ul><ul><li>Terminology databases </li></ul><ul><li>Translation memories </li></ul><ul><li>Alignment tools </li></ul><ul><li>Project management software </li></ul>Copyright 2008 Cris Silva and Giovana Boselli
  5. 5. DEFINING TM AND MT <ul><li>TRANSLATION MEMORY = searchable database containing source and translated sentences </li></ul><ul><li>MACHINE TRANSLATION = application of computers to the task of translating texts from one natural language to another. </li></ul><ul><li> </li></ul>Copyright 2008 Cris Silva and Giovana Boselli
  6. 6. OUR SCENARIO <ul><li>Trados + Google Translate + MS old Glossaries </li></ul>Copyright 2008 Cris Silva and Giovana Boselli
  7. 7. PROCESS STEPS <ul><li>Conversion of Excel CSV Microsoft glossaries into a Trados translation memory-friendly format. </li></ul><ul><li>Creation of a blank memory in Trados. </li></ul><ul><li>Import of Microsoft glossaries into Trados memory. </li></ul><ul><li>Writing of 3 unique sample texts (500 words each) </li></ul><ul><li>Pre-translation of sample texts in Trados. </li></ul><ul><li>Copying 0% match results of pre-translation from Trados. </li></ul><ul><li>Pasting of 0% match results of pre-translation to an Excel file. </li></ul><ul><li>Feeding of Excel file into Google Translate. </li></ul><ul><li>Translation by Google Translate. </li></ul><ul><li>Copying Google results from Google screen </li></ul><ul><li>Pasting results back into Excel file. </li></ul><ul><li>Error analysis of Google Translate </li></ul><ul><li>Scoring </li></ul><ul><li>Final score </li></ul>Copyright 2008 Cris Silva and Giovana Boselli
  8. 8. STEP 1: CONVERSION OF EXCEL CSV MICROSOFT GLOSSARIES INTO A TRADOS TRANSLATION MEMORY-FRIENDLY FORMAT Copyright 2008 Cris Silva and Giovana Boselli
  9. 9. STEP 1: CONVERSION OF EXCEL CSV MICROSOFT GLOSSARIES INTO A TRADOS TRANSLATION MEMORY-FRIENDLY FORMAT Copyright 2008 Cris Silva and Giovana Boselli
  10. 10. STEP 2: CREATION OF A BLANK MEMORY IN TRADOS Copyright 2008 Cris Silva and Giovana Boselli
  11. 11. STEP 3: IMPORT OF MICROSOFT GLOSSARIES INTO TRADOS MEMORY Copyright 2008 Cris Silva and Giovana Boselli
  12. 12. <ul><li>3 unique texts, 500 words each </li></ul><ul><li>written especifically for this experiment </li></ul><ul><li>based on Microsoft terminology and products. </li></ul><ul><li>focus on MS Word features. </li></ul><ul><li>leverage proportions from memory: </li></ul><ul><ul><li>30% same as memory (i.e., with a 100% match) </li></ul></ul><ul><ul><li>25% based on the memory, adding words or terms </li></ul></ul><ul><ul><li>25% based on the memory, deleting words or terms </li></ul></ul><ul><ul><li>20% new text from Microsoft Help web site for Word. </li></ul></ul>STEP 4: WRITING OF SAMPLE TEXTS Copyright 2008 Cris Silva and Giovana Boselli
  13. 13. STEP 4: SAMPLES Copyright 2008 Cris Silva and Giovana Boselli IN MEMORY OUR TEXT LEVERAGE Router does not have IPX installed. Router does not have IPX installed. 30% same as memory SECOND disk is bad or incompatible SECOND disk is bad or incompatible 30% same as memory Unable to view drive information. Unable to view drive information required . 25% based on the memory, with additions of words or terms Windows 2000 IP Configuration. Windows 2000 IP Configuration is ready. 25% based on the memory, with additions of words or terms Proxy Interface: has no group entries Proxy Interface: has group entries 25% based on the memory, cutting off words or terms A preference level does not exist for the protocol. A preference level exists for the protocol. 25% based on the memory, cutting off words or terms - In the Manage list, select Word Add-ins, and then click Go. 20 % new text from Microsoft Help web site for Word - Click the Templates tab. 20 % new text from Microsoft Help web site for Word
  14. 14. STEP 5: PRE-TRANSLATION OF SAMPLE TEXTS IN TRADOS Copyright 2008 Cris Silva and Giovana Boselli
  15. 15. STEP 6: COPYING OF 0% MATCH RESULTS OF PRE-TRANSLATION TO AN EXCEL FILE. Copyright 2008 Cris Silva and Giovana Boselli
  16. 16. STEP 7: PASTING OF 0% MATCH RESULTS OF PRE-TRANSLATION TO AN EXCEL FILE Copyright 2008 Cris Silva and Giovana Boselli
  17. 17. STEP 8: ENTERING EXCEL FILE INTO GOOGLE TRANSLATE Copyright 2008 Cris Silva and Giovana Boselli
  18. 18. STEP 9: TRANSLATION BY GOOGLE TRANSLATE Copyright 2008 Cris Silva and Giovana Boselli
  19. 19. STEP 10: COPYING TRANSLATED TEXT FROM GOOGLE Copyright 2008 Cris Silva and Giovana Boselli
  20. 20. STEP 11: PASTING GOOGLE TRANSLATE RESULTS INTO EXCEL Copyright 2008 Cris Silva and Giovana Boselli
  21. 21. ATA FRAMEWORK FOR ERROR MARKING Copyright 2008 Cris Silva and Giovana Boselli
  22. 22. OUR ERROR CATEGORIES Copyright 2008 Cris Silva and Giovana Boselli
  23. 23. A MATTER OF PERCEPTION? Copyright 2008 Cris Silva and Giovana Boselli
  24. 24. STEP 12: ERROR ANALYSIS OF GOOGLE TRANSLATION Copyright 2008 Cris Silva and Giovana Boselli
  25. 25. METRICS Copyright 2008 Cris Silva and Giovana Boselli
  26. 26. OUR EVALUATION SCHEME Copyright 2008 Cris Silva and Giovana Boselli
  27. 27. STEP 13: SCORING Copyright 2008 Cris Silva and Giovana Boselli
  28. 28. STEP 14: TOTAL SCORE Copyright 2008 Cris Silva and Giovana Boselli ORIGINAL SOURCE GOOGLE TRANSLATED (0% MATCH) SCORE T1 500 271 44.5 T2 500 319 39.75 T3 500 274 27.5
  29. 29. THANK YOU… Cris Silva Giovana Boselli [email_address] [email_address] We would like to thank Renato Beninatto José Henrique Pinto Sue Ellen Wright Jonathan Mendoza Riccardo Schiaffino Copyright 2008 Cris Silva and Giovana Boselli

×