• Save
Mobile Broadband Explosion: 3GPP Broadband Evolution to  IMT-Advanced
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
7,081
On Slideshare
2,738
From Embeds
4,343
Number of Embeds
36

Actions

Shares
Downloads
0
Comments
0
Likes
14

Embeds 4,343

http://3g4g.blogspot.com 3,751
http://blog.3g4g.co.uk 309
http://3g4g.blogspot.in 71
http://www.3g4g.blogspot.com 31
http://3g4g.blogspot.co.uk 26
http://feeds.feedburner.com 22
http://3g4g.blogspot.kr 16
http://3g4g.blogspot.de 16
http://3g4g.blogspot.tw 14
http://3g4g.blogspot.fr 10
http://3g4g.blogspot.com.au 10
http://3g4g.blogspot.com.es 9
http://3g4g.blogspot.it 4
http://3g4g.blogspot.ca 4
http://3g4g.blogspot.pt 4
http://3g4g.blogspot.jp 4
http://3g4g.blogspot.co.il 4
http://3g4g.blogspot.se 4
http://www.techgig.com 4
http://www.slideshare.net 4
http://3g4g.blogspot.fi 3
http://webcache.googleusercontent.com 3
http://translate.googleusercontent.com 3
http://3g4g.blogspot.co.nz 2
http://3g4g.blogspot.ae 2
http://3g4g.blogspot.ru 2
http://www.directrss.co.il 2
http://www.hanrss.com 1
http://3g4g.blogspot.hk 1
http://www.3g4g.blogspot.in 1
http://quidecco.com 1
http://3g4g.blogspot.com.br 1
http://3g4g.blogspot.no 1
http://10.16.0.145:81 1
http://3g4g.blogspot.com HTTP 1
http://www.blogger.com 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Mobile Broadband Explosion 3GPP Broadband Evolution to IMT-Advanced Mobile Broadband Explosion, Rysavy Research September 2011 2011 white paper
  • 2. Key Conclusions (1)• Mobile broadband – encompassing networks, devices, and applications – is  becoming one of the most‐successful and fastest‐growing industries of all time.• The wireless industry is addressing exploding data demand through a combination  of spectrally more efficient technology, heterogeneous networks (HetNets), and  self‐configuration and self‐optimization. Ultimately, however, large amounts of  additional harmonized spectrum is needed in most countries, and is critical to the  industry’s future.• LTE has become the global cellular‐technology platform of choice for both GSM‐ UMTS and Code Division Multiple Access (CDMA)/Evolved Data Optimized (EV‐DO)  operators. WiMAX operators have a smooth path to LTE‐Time Division Duplex (LTE‐ TDD).• The wireless technology roadmap now extends beyond IMT‐Advanced with LTE‐ Advanced being one of the first technologies defined to meet IMT‐Advanced  requirements. LTE‐Advanced will be capable of peak throughput rates that exceed  1 gigabit per second (Gbps). Mobile Broadband Explosion, Rysavy Research 2011 white paper 2
  • 3. Key Conclusions (2)• Future networks will be networks of networks, consisting of multiple‐access  technologies, multiple bands, widely‐varying coverage areas, all self‐organized and  self‐optimized. Such HetNets will significantly increase overall capacity.• GSM‐HSPA has an overwhelming global position in terms of subscribers,  deployment, and services. Its success will continue to marginalize other wide‐area  wireless technologies.• HSPA+ provides a strategic performance roadmap advantage for incumbent GSM‐ HSPA operators. Features such as multi‐carrier operation, Multiple Input Multiple  Output (MIMO), and higher‐order modulation offer operators numerous options  for upgrading their networks, with many of these features (e.g., multi‐carrier,  higher‐order modulation) being available as network software upgrades. With all  planned features implemented, HSPA+ peak rates will eventually reach an  astonishing 336 Mbps.• HSPA+ with 64 Quadrature Amplitude Modulation (QAM) and dual‐carrier  operation is spectrally more efficient than competing technologies including  WiMAX Release 1.0. Mobile Broadband Explosion, Rysavy Research 2011 white paper 3
  • 4. Key Conclusions (3)• The 3GPP OFDMA approach used in LTE matches or exceeds the capabilities of any  other OFDMA system. Peak theoretical downlink rates are 300 Mbps in a 20 MHz  channel bandwidth. LTE assumes a full Internet Protocol (IP) network architecture,  and it is designed to support voice in the packet domain.• GSM‐HSPA will comprise the overwhelming majority of subscribers over the next  five to ten years, even as new wireless technologies are adopted. The deployment  of LTE and its coexistence with UMTS‐HSPA will be analogous to the deployment of  UMTS‐HSPA and its coexistence with GSM.• EDGE technology has proven extremely successful and is widely deployed on GSM  networks globally. Advanced capabilities with Evolved EDGE can double and  eventually quadruple current EDGE throughput rates, halve latency, and increase  spectral efficiency. Mobile Broadband Explosion, Rysavy Research 2011 white paper 4
  • 5. Key Conclusions (4)• EPC will provide a new core network that supports both LTE and interoperability  with legacy GSM‐UMTS radio‐access networks and non‐3GPP‐based radio access  networks. Policy‐based charging and control provides flexible quality‐of‐service  (QoS) management, enabling new types of applications, as well as billing  arrangements.• Innovations such as EPC and UMTS one‐tunnel architecture will “flatten” the  network, simplifying deployment and reducing latency. • Wi‐Fi offload will play an increasingly important role in address demand and will  become progressively more seamless for users. Mobile Broadband Explosion, Rysavy Research 2011 white paper 5
  • 6. Wireline and Wireless Advances FTTH 100 Mbps100 Mbps ADSL2+ 25 Mbps10 Mbps LTE 10 Mbps ADSL 3 to 5 Mbps HSPA+ 5 Mbps 1 Mbps ADSL 1 Mbps HSDPA 1 Mbps ISDN  UMTS 350 kbps100 kbps 128 kbps EDGE 100 kbps GPRS 40 kbps10 kbps 2000 2005 2010 6 Mobile Broadband Explosion, Rysavy Research 2011 white paper
  • 7. Bandwidth RequirementsApplication Typical Throughput (Mbps)Streaming music 0.1Small screen (e.g., 0.2feature phone) videoMedium-definition video 1.0Higher-definition video 2.0High-definition, full- 4.0screen videoBlu-ray 16.0 Mobile Broadband Explosion, Rysavy Research 2011 white paper 7
  • 8. Bandwidth Management• More spectrum• Use unpaired spectrum• Increased spectral efficiency• More cell sites and heterogeneous networks• Femtocells• Wi‐Fi• Off‐peak hours• Quality of service• Innovative  data plans Mobile Broadband Explosion, Rysavy Research 2011 white paper 8
  • 9. Benefits of Spectrum and Offload Improved Throughputs with More Spectrum and Offload 16.0Throughput Per User (Mbps) 14.0 12.0 10.0 8.0 LTE (20 MHz) 6.0 LTE (40 MHz) 4.0 LTE (40 MHz), Offload 2.0 0.0 1 2 5 10 20 50 Simultaneous Users in Cell Sector Rysavy Research 2011 Mobile Broadband Explosion, Rysavy Research 2011 white paper 9
  • 10. Enhanced Technology Creates New Demand Expanded Usage Over TimeInitial Technology Initial Usage Enhanced Technology Is More Capable and Enables New Usages Thus Enhanced Technology to Driving Additional Respond to Expanded Usage Demand Mobile Broadband Explosion, Rysavy Research 2011 white paper 10
  • 11. CAPEX+OPEX For 1 GByte of Data Mobile Broadband Explosion, Rysavy Research 2011 white paper 11
  • 12. Global Mobile Data Growth Exabytes (billion billion bytes)  7 6 5 Per Month 4 3 2 1 0 2010 2011 2012 2013 2014 2015 YearSource: Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,” February 1, 2011. Mobile Broadband Explosion, Rysavy Research 2011 white paper 12
  • 13. Deployments as of 2Q 2011• Over 5.2 billion GSM‐UMTS subscribers.• In the U.S. wireless data represents 35% of revenue.• More than 531 commercial EDGE networks.• 752 million UMTS‐HSPA customers worldwide across 400  commercial networks.• More than 3,000 HSPA devices. Mobile Broadband Explosion, Rysavy Research 2011 white paper 13
  • 14. 1G to 4GGeneration Requirements Comments1G No official requirements. Deployed in the 1980s. Analog technology.2G No official requirements. First digital systems. Digital Technology. Deployed in the 1990s. New services such as SMS and low-rate data. Primary technologies include IS-95 CDMA and GSM.3G ITU’s IMT-2000 required 144 kbps mobile, Primary technologies include 384 kbps pedestrian, 2 Mbps indoors CDMA2000 1X/EV-DO and UMTS- HSPA. WiMAX now an official 3G technology.4G (Initial ITU’s IMT-Advanced requirements include No commercially deployedTechnical ability to operate in up to 40 MHz radio technology meets requirementsDesignation) channels and with very high spectral today. efficiency. IEEE 802.16m and LTE-Advanced being designed to meet requirements.4G (Current Systems that significantly exceed the Today’s HSPA+, LTE, and WiMAXMarketing performance of initial 3G networks. No networks meet this requirement.Designation) quantitative requirements. Mobile Broadband Explosion, Rysavy Research 2011 white paper 14
  • 15. Relative Adoption of Technologies LTERelative Subscriptions UMTS/HSPA GSM/EDGE 1990 2000 2010 2020 2030 Mobile Broadband Explosion, Rysavy Research 2011 white paper 15
  • 16. LTE: Platform for the Future Mobile Broadband Explosion, Rysavy Research 2011 white paper 16
  • 17. Characteristics of 3GPP Technologies (1) Typical Technology Typical Type Characteristics Downlink Name Uplink Speed Speed Most widely deployed cellular technology in the GSM TDMA world. Provides voice and data service via GPRS/EDGE. Data service for GSM networks. An 70 kbps 70 kbps EDGE TDMA enhancement to original to 135 kbps to 135 kbps GSM data service called GPRS. 175 kbps to 350 kbps Advanced version of EDGE expected that can double and (Single 150 kbps to Evolved eventually quadruple Carrier) TDMA 300 kbps EDGE throughput rates, halve 350 kbps to expected latency and increase spectral efficiency. 700 kbps expected (Dual Carrier) Mobile Broadband Explosion, Rysavy Research 2011 white paper 17
  • 18. Characteristics of 3GPP Technologies (2) Technology Typical Downlink Typical Uplink Type Characteristics Name Speed SpeedUMTS CDMA 3G technology providing voice and 200 to 300 kbps 200 to 300 kbps data capabilities. Current deployments implement HSPA for data service.HSPA CDMA Data service for UMTS networks. An 1 Mbps to 500 kbps enhancement to original UMTS data 4 Mbps to 2 Mbps service.HSPA+ CDMA Evolution of HSPA in various stages 1.9 to Mbps to 1 Mbps to to increase throughput and capacity 8.8 Mbps 4 Mbps and to lower latency. in 5/5 MHz in 5/5 MHz or in 10/5 MHz Approximate doubling with dual carrier in 10/5 MHzLTE OFDMA New radio interface that can use 6.5 to 26.3 Mbps in 6.0 to 13.0 Mbps in wide radio channels and deliver 10/10 MHz 10/10 MHz extremely high throughput rates. All communications handled in IP domain.LTE- Advanced OFDMA Advanced version of LTE designed to meet IMT-Advanced requirements. Mobile Broadband Explosion, Rysavy Research 2011 white paper 18
  • 19. Mobile Broadband Explosion, Rysavy Research 2011 white paper 19
  • 20. 3GPP Releases (1)• Release 99: Completed. First deployable version of UMTS. Enhancements to  GSM data (EDGE). Majority of deployments today are based on Release 99.  Provides support for GSM/EDGE/GPRS/WCDMA radio‐access networks.• Release 4: Completed. Multimedia messaging support. First steps toward  using IP transport in the core network. • Release 5: Completed. HSDPA. First phase of IMS. Full ability to use IP‐based  transport instead of just Asynchronous Transfer Mode (ATM) in the core  network.• Release 6: Completed. HSUPA. Enhanced multimedia support through  Multimedia Broadcast/Multicast Services (MBMS). Performance specifications  for advanced receivers. WLAN integration option. IMS enhancements. Initial  VoIP capability. Mobile Broadband Explosion, Rysavy Research 2011 white paper 20
  • 21. 3GPP Releases (2)• Release 7: Completed. Provides enhanced GSM data functionality with Evolved EDGE.  Specifies HSPA+, which includes higher order modulation and MIMO. Performance  enhancements, improved spectral efficiency, increased capacity, and better resistance  to interference. Continuous Packet Connectivity (CPC) enables efficient “always‐on”  service and enhanced uplink UL VoIP capacity, as well as reductions in call set‐up delay  for Push‐to‐Talk Over Cellular (PoC). Radio enhancements to HSPA include 64  Quadrature Amplitude Modulation (QAM) in the downlink DL and 16 QAM in the  uplink. Also includes optimization of MBMS capabilities through the  multicast/broadcast, single‐frequency network (MBSFN) function.• Release 8: Completed. Comprises further HSPA Evolution features such as  simultaneous use of MIMO and 64 QAM. Includes dual‐carrier HSPA (DC‐HSPA) wherein  two WCDMA radio channels can be combined for a doubling of throughput  performance. Specifies OFDMA‐based 3GPP LTE. Defines EPC and EPS. • Release 9: Completed. HSPA and LTE enhancements including HSPA dual‐carrier  operation in combination with MIMO, EPC enhancements, femtocell support, support  for regulatory features such as emergency user‐equipment positioning and Commercial  Mobile Alert System (CMAS), and evolution of IMS architecture.  Mobile Broadband Explosion, Rysavy Research 2011 white paper 21
  • 22. 3GPP Releases (3)• Release 10: Functionally frozen. Will specify LTE‐Advanced that meets the  requirements set by ITU’s IMT‐Advanced project. Key features include carrier  aggregation, multi‐antenna enhancements, relays, enhanced LTE Self Optimizing  Network (SON) capability, MBMS, and HetNet enhancements that include enhanced  Inter‐Cell Interference Coordination (eICIC). For HSPA, includes quad‐carrier operation  and additional MIMO options. Also includes femtocell enhancements, optimizations for  M2M communications, and local IP traffic offload.• Release 11: In planning stage, targeted for completion end of 2012. Emphasis is on Co‐ ordinated Multi‐Point (CoMP), carrier‐aggregation enhancements, and further  enhanced eICIC including devices with interference cancellation. For HSPA, provides 8‐ carrier on the downlink, uplink dual‐antenna beamforming and MIMO, and downlink  multi‐point transmission. Mobile Broadband Explosion, Rysavy Research 2011 white paper 22
  • 23. Operator Spectrum Requirements Operator Spectrum Requirement Busiest Markets 250 200 MHz of Spectrum 150 100 50 0 2010 2011 2012 2013 2014 2015 2016 Year Rysavy Research 2010 Source: Rysavy Research, “Mobile Broadband Capacity Constraints And the Need for Optimization,” February 24, 2010. Mobile Broadband Explosion, Rysavy Research 2011 white paper 23
  • 24. LTE Spectral Efficiency as Function of Radio  Channel Size 100 90 % Efficiency  Relative to 20 MHz 80 70 60 50 40 30 20 10 0 1.4 3 5 10 20 MHz Mobile Broadband Explosion, Rysavy Research 2011 white paper 24
  • 25. Mobile‐Specific Application Architectures Specification Management Scope Parlay X Originally ETSI, Parlay Group, 3GPP. Web-services approach for accessing network Now managed by OMA. functions such as call control messaging, presence, and location. Few implementations and current emphasis is on OneAPI. OneAPI GSMA in collaboration with OMA. RESTful (and some Web services) interfaces for: SMS, MMS, location, payment, voice-call control, data connection profile, device capability. WAC Wholesale Applications Community Device application programming interfaces (APIs), network APIs, and means of warehousing and distributing applications. Device APIs include standardized access to device functions such as audio players, cameras, messaging, accelerometers, and address book. Mobile Web W3C Multiple Web technologies for mobile applications including HTML5, Cascading Style Sheets 3 (CSS3), JavaScript, and widgets. Mobile Broadband Explosion, Rysavy Research 2011 white paper 25
  • 26. Expected Features/CapabilitiesYear Features2011 Evolved EDGE capabilities available to significantly increase EDGE throughput rates and announced deployments. Rapid deployment of LTE globally. LTE enhancements such as 4X2 MIMO available. LTE-Advanced specifications completed. HSPA+ with MIMO and dual-carrier available.2012 LTE-Advanced potentially deployed in initial stages. HetNet capabilities defined in Release 10 become available.2013 and Widespread use of packet voice in LTE using VoLTE.later Release 11 LTE Advanced adds capacity through CoMP. Mobile Broadband Explosion, Rysavy Research 2011 white paper 26
  • 27. Different LTE Deployment Scenarios Today Medium Term Long Term Mobile Broadband Explosion, Rysavy Research 2011 white paper
  • 28. Radio Resource Management  1xRTT/1xEV‐DO versus UMTS/HSPA Speech Unavailable High- Efficient Allocation of Resources Blocking Speed Data Capacity Between Voice and Data EV-DOThree 1.25 MHz Channels One 5 MHz Channel 1xRTT 1xRTT High-Speed Data Voice Mobile Broadband Explosion, Rysavy Research 2011 white paper 28
  • 29. Throughput Comparison Downlink Uplink Peak Peak Peak Peak Network And/Or Network And/Or Speed Typical User Speed Typical User Rate RateEDGE (type 2 MS) 473.6 kbps 473.6 kbps 200 kbps 200 kbpsEDGE (type 1 MS) peak peak 236.8 kbps 236.8 kbps(Practical Terminal) 70 to 135 70 to 135 kbps typical kbps typical 1 Mbps peak 400 kbps 350 to 700 peak kbps typicalEvolved EDGE expected 150 to 300 1184 kbps 473.6 kbps(type 1 MS) kbps typical (Dual expected Carrier)Evolved EDGE 1894.4 kbps 947.2 kbps(type 2 MS)Blue Indicates Theoretical Peak Rates, Green Typical Mobile Broadband Explosion, Rysavy Research 2011 white paper 29
  • 30. Throughput Comparison (2) Downlink Uplink Peak Peak Peak Peak Network And/Or Network And/Or Speed Typical User Speed Typical User Rate RateUMTS WCDMA Rel’99 2.048 Mbps 768 kbps 350 kbps 350 kbpsUMTS WCDMA Rel’99 peak peak 384 kbps 384 kbps(Practical Terminal) 200 to 300 200 to 300 kbps typical kbps typicalHSDPA Initial Devices > 1 Mbps 350 kbps 1.8 Mbps 384 kbps(2006) peak peakHSDPA 14.4 Mbps 384 kbps > 5 Mbps > 1.5 Mbps peak peakHSPA Initial 7.2 Mbps 700 kbps to 2 Mbps 500 kbps toImplementation 1.7 Mbps 1.2 Mbps typical typical Mobile Broadband Explosion, Rysavy Research 2011 white paper 30
  • 31. Throughput Comparison (3) Downlink Uplink Peak Network Peak And/Or Peak Peak And/Or Speed Typical User Network Typical User Rate Speed RateHSPA 14.4 Mbps 5.76 MbpsHSPA+ (DL 64 QAM, UL 16 QAM, 21.6 Mbps 1.9 Mbps to 11.5 Mbps 1 Mbps to5/5 MHz) 8.8 Mbps 4 MbpsHSPA+ (2X2 MIMO, 28 Mbps 11.5 MbpsDL 16 QAM, UL 16 QAM, 5/5MHz) 42 Mbps 11.5 MbpsHSPA+ (2X2 MIMO,DL 64 QAM, UL 16 QAM, 5/5MHz)HSPA+ 42 Mbps Approximate 11.5 Mbps 1 Mbps to doubling of 5/5 MHz 4 Mbps(DL 64 QAM, UL 16 QAM, Dual rates ofCarrier, 10/5 MHz) 1.9 Mbps to 8.8 MbpsHSPA+ (2X2 MIMO, 84 Mbps 23 MbpsDL 64 QAM, UL 16 QAM, DualCarrier, 10/10 MHz)HSPA+ (2X2 MIMO, 168 Mbps 23 MbpsDL 64 QAM, UL 16 QAM, QuadCarrier, 20/10 MHz) 336 Mbps 46 MbpsHSPA+ (2X2 MIMO,DL 64 QAM, UL 16 QAM, QuadCarrier, 40/10 MHz) Mobile Broadband Explosion, Rysavy Research 2011 white paper 31
  • 32. Throughput Comparison (4) Downlink Uplink Peak Peak Peak Peak Network And/Or Network And/Or Speed Typical User Speed Typical User Rate RateLTE (2X2 MIMO, 10/10 70 Mbps 6.5 to 26.3 35 Mbps 6.0 to 13.0MHz) Mbps Mbps 300 Mbps 71 MbpsLTE (4X4 MIMO, 20/20MHz) 1.2 Gbps 568 MbpsLTE Advanced (8X8 MIMO,20/20 MHz, DL 64 QAM, UL64 QAM) Mobile Broadband Explosion, Rysavy Research 2011 white paper 32
  • 33. Throughput Comparison (5) Downlink Uplink Peak Network Peak And/Or Peak Network Peak And/Or Speed Typical User Rate Speed Typical User RateCDMA2000 1XRTT 153 kbps 130 kbps peak 153 kbps 130 kbps peakCDMA2000 1XRTT 307 kbps 307 kbpsCDMA2000 EV-DO Rev 0 2.4 Mbps > 1 Mbps peak 153 kbps 150 kbps peak > 1.5 Mbps peak > 1 Mbps peakCDMA2000 EV-DO Rev A 3.1 Mbps 600 kbps to 1.4 1.8 Mbps 300 to 500 kbps Mbps typical typicalCDMA2000 EV-DO Rev B (3 radio 14.7 Mbps 5.4 Mbpschannels MHz)CDMA2000 EV-DO Rev B 73.5 Mbps 27 MbpsTheoretical (15 radio channels)WiMAX Release 1.0 (10 MHz TDD, 1 to 5 Mbps 46 Mbps 4 MbpsDL/UL=3, 2x2 MIMO) typicalWiMAX Release 1.5 TBD TBDIEEE 802.16m > 1 Gbps TBD Mobile Broadband Explosion, Rysavy Research 2011 white paper 33
  • 34. Throughput Distribution 6.0 5.0 4.0Throughput [Mbps] 3.0 2.0 1.0 0.0 0% % % % % % % % % % % % % % % % % % % 5% 0% 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 10 Mobile Broadband Explosion, Rysavy Research 2011 white paper 34
  • 35. HSDPA Performance in 7.2 Mbps Network Good Coverage Bad Coverage Median bitrate Median bitrate 3.8 Mbps 1.8 Mbps -106 dBm MobilePerformance Median bitratemeasured in a 1.9 Mbpscommercialnetwork Mobile Broadband Explosion, Rysavy Research 2011 white paper 35
  • 36. HSUPA Performance in a Commercial Network 100 Mobile 90 80 Median bitrate 70 1.0 Mbps 60 50 40 30 20 10 0 0 70 700 770 980 840 910 280 420 490 630 140 210 350 560 1120 1260 1330 1400 1050 1190 Mobile Broadband Explosion, Rysavy Research 2011 white paper 36
  • 37. HSPA+ Performance, 2 X 5 MHz Indoor coverage RSCP: -98 dBm 100 7.2 21 28 80 Median 60 MIMO: 8.2 Mbpscdf, % 64QAM: 7.2 Mbps HSPA7.2: 6.0 Mbps 40 20 0 0 2000 4000 6000 8000 10000 12000 Throughput (kbps) Mobile Broadband Explosion, Rysavy Research 2011 white paper
  • 38. Dual Carrier HSPA+ Throughputs Mobile Broadband Explosion, Rysavy Research 2011 white paper 38
  • 39. Drive Test of Commercial European LTE Network, 2 X 10 MhzMbps Mobile Broadband Explosion, Rysavy Research 2011 white paper
  • 40. LTE Throughputs in Various Modes Mobile Broadband Explosion, Rysavy Research 2011 white paper 40
  • 41. LTE Actual Throughput Rates Based on Conditions Source: LTE/SAE Trial Initiative, “Latest Results from the LSTI, Feb 2009,” http://www.lstiforum.org. Mobile Broadband Explosion, Rysavy Research 2011 white paper 41
  • 42. Latency of Different Technologies 700 600 500Milliseconds 400 300 20 0 100 GPRS EDGE EDGE WCDMA Evolved HSDPA HSPA HSPA+ LTE Rel’97 Rel’99 Rel’4 Rel’99 EDGE Mobile Broadband Explosion, Rysavy Research 2011 white paper
  • 43. Performance Relative to Theoretical Limits 6 Shannon bound Shannon bound with 3dB margin 5 HSDPA EV-DO Achievable Efficiency (bps/Hz) IEEE 802.16e-2005 4 3 2 1 0 -15 -10 -5 0 5 10 15 20 Required SNR (dB) Mobile Broadband Explosion, Rysavy Research 2011 white paper 43
  • 44. Comparison of Downlink Spectral Efficiency 2.5 2.4 Future 2.3 improvements 2.2 4X4 MIMO with SIC, or 2.1 4X2 MIMO with CoMP, or 2.0 8X2 MIMO with SU/MU- Spectral Efficiency (bps/Hz/sector) MIMO switching 1.9 1.8 1.7 4X2 MIMO 1.6 1.5 Future 1.4 improvements LTE 1.3 Future 2X2 MIMO Future Rel 1.5 1.2 improvements improvements 4X2 MIMO 1.1 MIMO Rel 1.5 Rev B 2X2 MIMO 1.0 64 QAM, DC Cross-Carrier 0.9 Scheduling 0.8 HSDPA Rel 1.0 MRxD, Rev A, 2X2 MIMO 0.7 Equalizer MRxD, 0.6 Equalizer 0.5 0.4 HSDPA EV-DO Rev 0 0.3 0.2 0.1 UMTS R’99 UMTS/HSPA/HSPA+ LTE CDMA2000 WiMAX Mobile Broadband Explosion, Rysavy Research 2011 white paper 44
  • 45. Comparison of Uplink Spectral Efficiency Future Improvements 1.3 1x2 CoMP or 2X4 MU-MIMO 1.2 1x8 Receive Diversity 1x4 MU-MIMO 1.1 1.0Spectral Efficiency (bps/Hz/sector) 1x4 Receive Diversity 0.9 Future 0.8 Improvements Rel 1.5 0.7 1X4 Receive 0.6 1X2 Diversity Future Receive Future Improvements Diversity Improvements 0.5 Rel 1.5 1X2 HSPA+ EV-DO Rev B, Interference Rx Div 0.4 Interference Cancellation, Cancellation Rel 16 QAM 1.0 0.3 0.2 HSUPA Rel 6 EV-DO Rev A UMTS R’99 0.1 to Rel 5 EV-DO Rev 0 UMTS/HSPA LTE CDMA2000 WiMAX Mobile Broadband Explosion, Rysavy Research 2011 white paper 45
  • 46. Comparison of Voice Spectral Efficiency 250 Future Improvements 225 LTE AMR 5.9 kbps 200 LTE AMR 7.95Erlangs, 5 + 5 MHz kbps Future Future Improvements 175 Improvements LTE VoIP 1xRTT RLIC, Rx Div, HSPA VoIP, AMR 12.2 kbps EVRC-B 6 kbps 150 Interference Cancellation Future AMR 5.9 kbps Improvements 125 UMTS MRxD 1xRTT QLIC EVRC-B 6 kbps Rel 1.5 AMR 5.9 kbps 100 EVRC-B UMTS 6kbps AMR 5.9 kbps 75 1xRTT Rel 1.0 UMTS EVRC 8 kbps EVRC AMR 7.95 kbps 8 kbps 50 UMTS AMR 12.2 kbps 25 UMTS/HSPA LTE CDMA2000 WiMAX Mobile Broadband Explosion, Rysavy Research 2011 white paper 46
  • 47. Mobile Broadband Explosion, Rysavy Research 2011 white paper 47
  • 48. Throughput Requirements• Microbrowsing (for example, Wireless Application  Protocol [WAP]): 8 to 128 kbps• Multimedia messaging: 8 to 64 kbps• Video telephony: 64 to 384 kbps• General‐purpose Web browsing: 32 kbps to more  than 1 Mbps• Enterprise applications including e‐mail, database  access, and VPNs: 32 kbps to more than 1 Mbps• Video and audio streaming: 32 kbps to 2 Mbps• High definition video: 4 Mbps or higher Mobile Broadband Explosion, Rysavy Research 2011 white paper 48
  • 49. UMTS FDD BandsOperating UL Frequencies DL frequencies Band UE transmit, Node B receive UE receive, Node B transmit I 1920 - 1980 MHz 2110 -2170 MHz II 1850 -1910 MHz 1930 -1990 MHz III 1710-1785 MHz 1805-1880 MHz IV 1710-1755 MHz 2110-2155 MHz V 824 - 849MHz 869-894MHz VI 830-840 MHz 875-885 MHz VII 2500 - 2570 MHz 2620 - 2690 MHz VIII 880 - 915 MHz 925 - 960 MHz IX 1749.9 - 1784.9 MHz 1844.9 - 1879.9 MHz X 1710-1770 MHz 2110-2170 MHz XI 1427.9 - 1447.9 MHz 1475.9 - 1495.9 MHz XII 698 - 716 MHz 728 - 746 MHz XIII 777 - 787 MHz 746 - 756 MHz XIV 788 - 798 MHz 758 - 768 MHz XV Reserved Reserved XVI Reserved Reserved XVII Reserved Reserved XVIII Reserved Reserved XIX 830 – 845 MHz 875 -890 MHz XX 832 - 862 MHz 791 - 821 MHz XXI 1447.9 - 1462.9 MHz 1495.9 - 1510.9 MHzSource: 3GPP Technical Specification 25.104, V10.1.0 Mobile Broadband Explosion, Rysavy Research 2011 white paper 49
  • 50. E-UTRA LTE FDD and TDD Bands Uplink (UL) operating band Downlink (DL) operating band Duplex Operating BS receive BS transmit Mode Band UE transmit UE receive FUL_low – FUL_high FDL_low – FDL_high 1 1920 MHz – 1980 MHz 2110 MHz – 2170 MHz FDD 2 1850 MHz – 1910 MHz 1930 MHz – 1990 MHz FDD 3 1710 MHz – 1785 MHz 1805 MHz – 1880 MHz FDD 4 1710 MHz – 1755 MHz 2110 MHz – 2155 MHz FDD 5 824 MHz – 849 MHz 869 MHz – 894MHz FDD 61 830 MHz – 840 MHz 875 MHz – 885 MHz FDD 7 2500 MHz – 2570 MHz 2620 MHz – 2690 MHz FDD 8 880 MHz – 915 MHz 925 MHz – 960 MHz FDD 9 1749.9 MHz – 1784.9 MHz 1844.9 MHz – 1879.9 MHz FDD 10 1710 MHz – 1770 MHz 2110 MHz – 2170 MHz FDD 11 1427.9 MHz – 1447.9 MHz 1475.9 MHz – 1495.9 MHz FDD 12 699 MHz – 716 MHz 729 MHz – 746 MHz FDD 13 777 MHz – 787 MHz 746 MHz – 756 MHz FDD 14 788 MHz – 798 MHz 758 MHz – 768 MHz FDD 15 Reserved Reserved FDD 16 Reserved Reserved FDD 17 704 MHz – 716 MHz 734 MHz – 746 MHz FDD 18 815 MHz – 830 MHz 860 MHz – 875 MHz FDD 19 830 MHz – 845 MHz 875 MHz – 890 MHz FDD 20 832 MHz – 862 MHz 791 MHz – 821 MHz 21 1447.9 MHz – 1462.9 MHz 1495.9 MHz – 1510.9 MHz FDD 24 1626.5 MHz – 1660.5 MHz 1525 MHz – 1559 MHz FDD ... 33 1900 MHz – 1920 MHz 1900 MHz – 1920 MHz TDD 34 2010 MHz – 2025 MHz 2010 MHz – 2025 MHz TDD 35 1850 MHz – 1910 MHz 1850 MHz – 1910 MHz TDD 36 1930 MHz – 1990 MHz 1930 MHz – 1990 MHz TDD 37 1910 MHz – 1930 MHz 1910 MHz – 1930 MHz TDD 38 2570 MHz – 2620 MHz 2570 MHz – 2620 MHz TDD 39 1880 MHz – 1920 MHz 1880 MHz – 1920 MHz TDD 40 2300 MHz – 2400 MHz 2300 MHz – 2400 MHz TDD 41 2496 MHz – 2690 MHz 2496 MHz – 2690 MHz TDD 42 3400 MHz – 3600 MHz 3400 MHz – 3600 MHz TDD 43 3600 MHz – 3800 MHz 3600 MHz – 3800 MHz TDD Note 1: Band 6 is not applicable.Source: 3GPP Technical Specification 36.104, V10.2.0. Mobile Broadband Explosion, Rysavy Research 2011 white paper 50
  • 51. GPRS/EDGE ArchitectureMobile BaseStation Transceiver Public SwitchedMobile Station Circuit-Switched Telephone NetworkStation Traffic Base Base MobileMobile Transceiver Station SwitchingStation Station Controller Center Home Location IP Register Traffic GPRS/EDGE Data Infrastructure Serving Gateway GPRS GPRS External Data Support Support Network (e.g., Internet) Node Node Mobile Broadband Explosion, Rysavy Research 2011 white paper 51
  • 52. Example of GSM/GPRS/EDGE  Timeslot Structure 4.615 ms per frame of 8 timeslots 577 S per timeslot 0 1 2 3 4 5 6 7 Possible BCCH BCCH TCH TCH TCH TCH PDTCH PDTCH PDTCH carrier configuration 0 1 2 3 4 5 6 7Possible TCH carrier PBCCH TCH TCH PDTCH PDTCH PDTCH PDTCH PDTCH configuration BCCH: Broadcast Control Channel – carries synchronization, paging and other signalling information TCH: Traffic Channel – carries voice traffic data; may alternate between frames for half-rate PDTCH: Packet Data Traffic Channel – Carries packet data traffic for GPRS and EDGE PBCCH: Packet Broadcast Control Channel – additional signalling for GPRS/EDGE; used only if needed Mobile Broadband Explosion, Rysavy Research 2011 white paper 52
  • 53. Evolved EDGE Objectives• A 100 percent increase in peak data rates.• A 50 percent increase in spectral efficiency and capacity in C/I‐limited scenarios.• A sensitivity increase in the downlink of 3 dB for voice and data.• A reduction of latency for initial access and round‐trip time, thereby enabling  support for conversational services such as VoIP and PoC.• To achieve compatibility with existing frequency planning, thus facilitating  deployment in existing networks.• To coexist with legacy mobile stations by allowing both old and new stations to  share the same radio resources.• To avoid impacts on infrastructure by enabling improvements through a software  upgrade.• To be applicable to DTM (simultaneous voice and data) and the A/Gb mode  interface. The A/Gb mode interface is part of the 2G core network, so this goal is  required for full backward‐compatibility with legacy GPRS/EDGE.   Mobile Broadband Explosion, Rysavy Research 2011 white paper 53
  • 54. Evolved EDGE Two‐Carrier Operation Slot N + 1 Slot N (Idle Frame) Slot N + 2 Slot N + 3 Rx1Rx2Tx (1) Neighbor Cell Measurements Uplink Timeslot Downlink Timeslot Mobile Broadband Explosion, Rysavy Research 2011 white paper 54
  • 55. Evolved EDGE Theoretical Rates• Type 2 mobile device (one that can support simultaneous  transmission and reception) using DBS‐12 as the MCS and a dual‐ carrier receiver can achieve the following performance: – Highest data rate per timeslot (layer 2) = 118.4 kbps – Timeslots per carrier = 8 – Carriers used in the downlink = 2 – Total downlink data rate = 118.4 kbps X 8 X 2 = 1894.4 kbps • This translates to a peak network rate close to 2 Mbps and a user‐ achievable data rate of well over 1 Mbps! Mobile Broadband Explosion, Rysavy Research 2011 white paper 55
  • 56. Evolved EDGE Implementation  Mobile Broadband Explosion, Rysavy Research 2011 white paper 56
  • 57. UMTS Multi‐Radio Network Packet-Switched GSM/EDGE Networks UMTS WCDMA, Core Network Circuit-Switched HSDPA (MSC, HLR, Networks SGSN, GGSN) Other Other Cellular e.g., WLAN OperatorsRadio-Access External NetworksNetworksCommon core network can support multiple radio access networks Mobile Broadband Explosion, Rysavy Research 2011 white paper 57
  • 58. High Speed Downlink Packet Access• High speed data enhancement for WCDMA/UMTS• Peak theoretical speeds of 14 Mbps • Current devices support 7.2 Mbps throughput• Methods used by HSDPA – High speed channels shared both in the code and time  domains – Short transmission time interval (TTI) – Fast scheduling and user diversity – Higher‐order modulation – Fast link adaptation – Fast hybrid automatic‐repeat‐request (HARQ) Mobile Broadband Explosion, Rysavy Research 2011 white paper 58
  • 59. HSDPA Channel Assignment ‐ Example User 1 User 2 User 3 User 4Channelization Codes 2 msec Time Radio resources assigned both in code and time domains Mobile Broadband Explosion, Rysavy Research 59 2011 white paper
  • 60. HSDPA Multi‐User Diversity User 1 High data rateSignal Quality User 2 Low data rate Time User 2 User 1 User 2 User 1 User 2 User 1 Efficient scheduler favors transmissions to users with best radio conditions Mobile Broadband Explosion, Rysavy Research 2011 white paper 60
  • 61. High Speed Uplink Packet Access• 85% increase in overall cell throughput on the uplink• Achievable rates of 1 Mbps on the uplink• Reduced packet delays to as low as 30 msec• Methods: – An enhanced dedicated physical channel – A short TTI, as low as 2 msec, which allows faster  responses to changing radio conditions and error  conditions – Fast Node B‐based scheduling, which allows the base  station to efficiently allocate radio resources  – Fast Hybrid ARQ, which improves the efficiency of error  processing Mobile Broadband Explosion, Rysavy Research 2011 white paper 61
  • 62. HSPA+ Objectives• Exploit the full potential of a CDMA approach before moving to an OFDM  platform in 3GPP LTE. • Achieve performance close to LTE in 5 MHz of spectrum.• Provide smooth interworking between HSPA+ and LTE, thereby facilitating  the operation of both technologies. As such, operators may choose to  leverage the EPC/SAE planned for LTE.• Allow operation in a packet‐only mode for both voice and data.• Be backward‐compatible with previous systems while incurring no  performance degradation with either earlier or newer devices.• Facilitate migration from current HSPA infrastructure to HSPA+  infrastructure. Mobile Broadband Explosion, Rysavy Research 2011 white paper 62
  • 63. HSPA Throughput Evolution Downlink (Mbps) Uplink (Mbps) Technology Peak Data Rate Peak Data RateHSPA as defined in Release 6 14.4 5.76Release 7 HSPA+ DL 64 QAM, 21.1 11.5UL 16 QAM, 5/5 MHzRelease 7 HSPA+ 2X2 MIMO, 28.0 11.5DL 16 QAM, UL 16 QAM, 5/5 MHzRelease 8 HSPA+ 2X2 MIMO 42.2 11.5DL 64 QAM, UL 16 QAM, 5/5 MHzRelease 8 HSPA+ (no MIMO) 42.2 11.5Dual Carrier, 10/5 MHzRelease 9 HSPA+ 2X2 MIMO, Dual 84.0 23.0Carrier, 10/10 MHzRelease 10 HSPA + 2X2 MIMO, Quad 168.0 23.0Carrier, 20/10 MHzRelease 11 HSPA + 2X2 MIMO DL and 336.0 46.0UL, 8 Carrier, 40/10 MHz Mobile Broadband Explosion, Rysavy Research 2011 white paper 63
  • 64. Dual‐Cell Operation with  One Uplink Carrier Uplink Downlink 1 x 5 MHz 2 x 5 MHzUE1 1 x 5 MHz 2 x 5 MHzUE2 Mobile Broadband Explosion, Rysavy Research 2011 white paper 64
  • 65. Dual‐Carrier Performance 100 Ped A, 10% load 90 80 70 60CDF [%] 50 40 30 RAKE, single-carrier RAKE, multi-carrier 20 GRAKE, single-carrier GRAKE, multi-carrier 10 GRAKE2, single-carrier GRAKE2, multi-carrier 0 0 5 10 15 20 25 30 35 40 Achievable bitrate [Mbps] Mobile Broadband Explosion, Rysavy Research 2011 white paper 65
  • 66. HSPA/HSPA+ One‐Tunnel Architecture Traditional HSPA HSPA with One-Tunnel Possible HSPA+ with Architecture Architecture One-Tunnel Architecture GGSN GGSN GGSN User Plane SGSN SGSN SGSNControl Plane RNC RNC Node B Node B Node B Mobile Broadband Explosion, Rysavy Research 2011 white paper 66
  • 67. Summary of HSPA Functions and Benefits Uplink DTX + downlink Lower UE power consumption DRX CS voice over HSPA Higher voice capacity Downlink 64QAM, MIMO Higher downlink peak data and Dual carrier rates and higher data capacity Uplink 16QAM Higher uplink peak data rates L2 optimization Higher L2 throughput and less (Flexible RLC) processing requirements High speed FACH + High Lower latency = better speed RACH response times More efficient common channels = savings in channel elements Flat architecture Less network elements optimization Mobile Broadband Explosion, Rysavy Research 2011 white paper 67
  • 68. CS Voice Over HSPA Mobile Broadband Explosion, Rysavy Research 2011 white paper 68
  • 69. Smooth Migration to VoIP over HSPA1.4 VoIP1.2 CS 1 CS + VoIP0.8Relative Capacity0.60.40.2 0 0 Power reserved for PS traffic (W) 2 4 6 8 10 12 14 PS Evolution Mobile Broadband Explosion, Rysavy Research 2011 white paper 69
  • 70. LTE Capabilities• Downlink peak data rates up to 326 Mbps with 20 MHz bandwidth• Uplink peak data rates up to 86.4 Mbps with 20 MHz bandwidth• Operation in both TDD and FDD modes.• Scalable bandwidth up to 20 MHz, covering 1.4, 2.5, 5, 10, 15, and 20 MHz• Increased spectral efficiency over Release 6 HSPA by a factor of two to four• Reduced latency, to 10 msec round‐trip time between user equipment and the  base station, and to less than 100 msec transition time from inactive to active LTE Configuration Downlink (Mbps) Uplink (Mbps) Peak Data Rate Peak Data Rate Using 2X2 MIMO in the Downlink and 16 70.0 22.0 QAM in the Uplink, 10/10 MHz Using 4X4 MIMO in the Downlink and 64 300.0 71.0 QAM in the Uplink, 20/20 MHz Mobile Broadband Explosion, Rysavy Research Migration2011 white paper 70 HSPA to LTE to 4G, Rysavy Research Advanced, Rysavy Research 2010 white paper Sept 2009 white paper
  • 71. LTE OFDMA Downlink Resource Assignment in Time and Frequency  User 1 User 2 User 3 Frequency User 4 Time Minimum resource block consists of 14 symbols and 12 subcarriers Mobile Broadband Explosion, Rysavy Research 2011 white paper 71
  • 72. Frequency Domain Scheduling in LTE Carrier bandwidth Resource block Frequency Transmit on those resource blocks  that are not faded Mobile Broadband Explosion, Rysavy Research 2011 white paper 72
  • 73. LTE Antenna SchemesSource: 3G Americas’ white paper “MIMO and Smart Antennas for 3G and 4G WirelessSystems – Practical Aspects and Deployment Considerations,” May 2010. Mobile Broadband Explosion, Rysavy Research 2011 white paper 73
  • 74. Evolution of Voice in LTE Networks Mobile Broadband Explosion, Rysavy Research 2011 white paper 74
  • 75. TDD Frame Co‐Existence Between  TD‐SCDMA and LTE TDD Mobile Broadband Explosion, Rysavy Research 2011 white paper 75
  • 76. Inter‐Technology Carrier Aggregation Mobile Broadband Explosion, Rysavy Research 2011 white paper 76
  • 77. LTE‐Advanced Carrier Aggregation Release 10 LTE-Advanced UE resource pool Rel’8 Rel’8 Rel’8 Rel’8 Rel’8 100 MHz bandwidth 20 MHz Release 8 UE uses a single 20 MHz blockSource: "LTE for UMTS, OFDMA and SC-FDMA Based Radio Access,”Harri Holma and Antti Toskala, Wiley, 2009. Mobile Broadband Explosion, Rysavy Research 2011 white paper 77
  • 78. LTE‐Advanced Carrier Aggregation  at Protocol LayersSource: “The Evolution of LTE towards IMT-Advanced”,Stefan Parkvall and David Astely, Ericsson Research Mobile Broadband Explosion, Rysavy Research 2011 white paper 78
  • 79. IMT‐Advanced and LTE‐Advanced IMT-Advanced LTE-AdvancedItem Requirement Projected CapabilityPeak Data Rate Downlink 1 GbpsPeak Data Rate Uplink 500 MbpsSpectrum Allocation Up to 40 MHz Up to 100 MHzLatency User Plane 10 msec 10 msecLatency Control Plane 100 msec 50 msecPeak Spectral Efficiency DL 15 bps/Hz 30 bps/HzPeak Spectral Efficiency UL 6.75 bps/Hz 15 bps/HzAverage Spectral Efficiency DL 2.2 bps/Hz 2.6 bps/HzAverage Spectral Efficiency UL 1.4 bps/Hz 2.0 bps/HzCell-Edge Spectral Efficiency DL 0.06 bps/Hz 0.09 bps/HzCell-Edge Spectral Efficiency UL 0.03 bps/Hz 0.07 bps/Hz Mobile Broadband Explosion, Rysavy Research 2011 white paper 79
  • 80. LTE‐Advanced Relay Direct LinkRelay Link Access Link Mobile Broadband Explosion, Rysavy Research 2011 white paper 80
  • 81. IP Multimedia Subsystem SIP Application IMS Server Home Subscriber Server (HSS) Media Resource SIP Function Control DIAMETER Media Resource Call Session Control Function (CSCF) Gateway Control (SIP Proxy)UMTS/HSPAPacket Core DSL Wi-Fi Network Multiple Possible Access Networks Mobile Broadband Explosion, Rysavy Research 2011 white paper
  • 82. Enhanced Intercell Interference Cancellation Mobile Broadband Explosion, Rysavy Research 2011 white paper 82
  • 83. Load Balancing with Heterogeneous Networks Mobile Broadband Explosion, Rysavy Research 2011 white paper 83
  • 84. Efficient Broadcasting with OFDMLTE will leverage OFDM-based broadcasting capabilities Mobile Broadband Explosion, Rysavy Research 2011 white paper 84
  • 85. GERAN Evolved Packet System SGSN Rel’7 Legacy GSM/UMTS UTRAN One-Tunnel Option PCRF MME Control IPEvolved RAN, User Plane Serving PDN Services, e.g., LTE Gateway Gateway IMS EPC/SAE Access Gateway Non 3GPP IP Access Mobile Broadband Explosion, Rysavy Research 2011 white paper 85
  • 86. Evolved Packet System Elements• Flatter architecture to reduce latency• Support for legacy GERAN and UTRAN networks connected  via SGSN.• Support for new radio‐access networks such as LTE.• The Serving Gateway that terminates the interface toward the  3GPP radio‐access networks.• The PDN gateway that controls IP data services, does routing,  allocates IP addresses, enforces policy, and provides access for  non‐3GPP access networks.• The MME that supports user equipment context and identity  as well as authenticates and authorizes users.• The Policy Control and Charging Rules Function (PCRF) that  manages QoS aspects. Mobile Broadband Explosion, Rysavy Research 2011 white paper 86
  • 87. Conclusion• Mobile broadband has become the leading edge in innovation and development for  computing, networking, and application development. • The growing success of mobile broadband, however, mandates augmentation of capacity  to which the industry has responded by using more efficient technologies, deploying more  cell sites, planning for sophisticated heterogeneous networks, and offloading onto either  Wi‐Fi or femtocells. • Through constant innovation, the 3GPP family of technologies has proven itself as the  predominant wireless network solution and offers operators and subscribers a true  mobile‐broadband advantage. • UMTS/HSPA provides for broadband services that will deliver increased data revenue and  provide a path to all‐IP architectures.• LTE is the OFDMA technology choice for higher speeds and capabilities. • UMTS/HSPA and/or LTE offer an excellent migration path for GSM operators, as well as an  effective technology solution for greenfield operators.• EDGE/HSPA/LTE is one of the most robust portfolios of mobile‐broadband technologies  and is an optimum framework for realizing the potential of the wireless‐data market. Mobile Broadband Explosion, Rysavy Research 2011 white paper 87