Your SlideShare is downloading. ×
0
Cardiovascular Physiology and Monitoring<br /> Tariq AlZahrani  M.D<br />Assistant professor <br /> College of medicine<br...
Coronary Circulation<br /><ul><li>Blood Supply</li></ul>      RCA<br />LCA<br /><ul><li>Conduction System</li></ul>      S...
Cardiac Cell Types<br />• Electrical cells <br />Generate and conduct impulses rapidly<br />• SA and AV nodes<br />• Nodal...
Atrio-ventricular (AV) node<br />Sino-atrial<br />(SA) node<br />BUNDLE<br />BRANCHES<br />PURKINJE FIBERS<br />
INTERCALATED  DISC  (TIGHT JUNCTION)<br />
Nerve impulse Terminology<br />• Resting state<br /> The relative electrical charges found on each side of the membrane at...
Action Potential Terms<br />• Depolarization<br />The sudden reversal of electrical charges<br />across the neuron membran...
Automaticity (P Cells)<br />Prepotential,<br />    Resting Potential, Diastolic Depolarization<br />Action Potential<br />...
Conduction Speed<br />A-V nodal conduction:<br />One way conduction<br />A-V nodal Delay (0.1 sec)<br />Factors Affecting ...
PHASE<br />Mechanical Response<br />0 = Rapid Depolarization<br />     (inward Na+ current)      <br />1 = Overshoot<br />...
ACTION  POTENTIALS<br />VENTRICULULAR<br />CELL<br />SAN<br />1<br />2<br />0<br />0<br />0<br />3<br />0<br />3<br />4<br...
Cardiac Myocyte<br /><ul><li>Structure
Ca++ Release
Excitation-Contraction Coupling</li></li></ul><li>The Fibrous A-V Ring<br />
THE ANATOMY OF BLOOD VESSELS<br />Layers:<br />Tunica interna (intima)<br />Tunica media<br />Tunica externa (adventitia)<...
Comparison of Veins and Arteries<br />Arteries:				Veins:	<br />
The Distribution of Blood<br />
Cardiac Output<br />CO = SV x HR<br />• The amount of blood ejected from the<br />ventricle in one minute<br />• Stroke vo...
Determination of Stroke Volume<br />• Preload<br /> Amount of blood delivered to the chamber<br /> Depend upon venous retu...
• End-diastolic volume (110-120 mL)<br />• End-systolic volume (40-50 mL)<br />• Stroke volume (70 mL)<br />• Ejection fra...
Pressure-Volume Loops<br />
Volume Load  ►<br />Pressure  Load ►<br />
Regulation of Cardiovascular System<br />Neural Mechanisms<br />Vasoconstriction<br />Vaosdilation<br />Baroreceptors<br /...
Nerve Supply of the Conduction System<br />
HORMONAL  REGULATION<br />Epinephrine & Norepinephrine<br />From the adrenal medulla<br />Renin-angiotensin-aldosterone<br...
RENIN-ANGIOTENSIN-ALDOSTERONE MECHANISM<br />Angiotensinogen (renin substrate)<br />Angiotensin<br />		Aldosterone<br />	K...
VASOPRESSIN<br />(ANTIDIURETIC  HORMONE)<br />	Hypothalamic<br />Osmoreceptors<br /> BP via Posterior Pituitary		  Vasop...
How To interpret ECG?<br />1.  Rate?<br />2. QRS Duration?<br />3. Stability?<br />
ECG limb leads<br />
Normal ECG<br />
<ul><li>P wave corresponds to depolarization of SA node
 QRS complex corresponds to ventricular  Depolarization
T wave corresponds to ventricular repolarization
Atrial repolarization record is masked by the larger QRS complex</li></li></ul><li>Measurements<br />Small square = 0.04 s...
Remember This 3, 3, 3 and 5<br />P duration = 3 small sqs = 0.12 sec.<br />P height = 3 small sqs = 0.12 sec.<br />QRS dur...
Right ventricular hypertrophy (precordial leads)<br />
Left ventricular hypertrophy (precordial leads)<br />
QRS voltage decrease<br />• Myocardial infarction (decrease of<br />      excitable myocardium mass)<br />• Fluids in the ...
J-point:<br />-Time point of completeddepolarization (zero reference)<br />-The junction of the QRS and the ST segment<br ...
Injury currents: constant source<br />• Mechanical trauma<br />• Infectious process<br />• Ischemia<br />
Ischemia=ST depression or T-wave inversion<br />   Represents lack of oxygen to myocardial tissue<br />
Injury = ST elevation -- represents prolonged ischemia; significant when &gt; 1 mm above the baseline of the segment in tw...
Infarct = Q wave— represented by first negative deflection after P wave; must be pathological to indicate MI<br />
What part of the heart is affected ?<br /><ul><li>II, III, aVF = </li></ul>Inferior Wall<br />I<br />II<br />III<br />aVR<...
Which part of the heart is affected ?<br />I<br />II<br />III<br />aVR<br />aVL<br />aVF<br />V1<br />V2<br />V3<br />V4<b...
What part of the heart is affected ?<br /><ul><li>I, aVL, V5 and V6</li></ul>Lateral wall of left ventricle<br />I<br />II...
I, aVL, V5 + V6 = <br />    Lateral Wall = <br />    Circumflex Artery<br />    Blockage<br />
 Rate<br />If regular: Divide 300/ number of large squares between 2 Rs = HR<br />If irregular: count number of complexes ...
Supraventricular Rhythm<br />Rate &gt; 100.<br />QRS: Narrow.<br />Stable or unstable.<br />Rate &lt; 60.<br />QRS: Narrow...
Supraventricular Rhythm: Tachycardia<br />Sinus Tachycardia<br />
Supraventricular Rhythm: Tachycardia<br />Paroxysmal SVT<br />
Supraventricular Rhythm: Tachycardia<br />Atrial Flutter<br />
Supraventricular Rhythm: Tachycardia<br />Atrial Fibrillations<br />
Supraventricular Rhythm: Bradycardia<br />Normal Sinus Rhythm<br />Sinus Bradycardia<br />
Supraventricular Rhythm: Bradycardia<br />1st Degree HB<br />
Supraventricular Rhythm: Bradycardia<br />2nd  Degree HB: Mobitz 1 Wenckebach.<br />Progressive lengthening of the P-R int...
Supraventricular Rhythm: Bradycardia<br />2nd  Degree HB: Mobitz 2<br />Sudden drop of QRS without prior P-R changes<br />
Supraventricular Rhythm: Bradycardia<br />3rd Degree HB<br />
The right bundle brunch block (precordial leads)<br />
Left bundle branch block (precordial leads)<br />
Characteristics of PVCs<br />• QRS prolongation due to slower conduction in the<br />    muscle fibers<br />• QRS high amp...
Ventricular Rhythm<br />Idioventricular Rhythm.<br />
Ventricular Rhythm<br />Accelerated Idioventricular Rhythm.<br />
Ventricular Rhythm<br />
Ventricular Rhythm<br />
Ventricular Rhythm<br />Pacer Rhythm<br />
 Stability<br /> * Stable patient: think of drug therapy.<br /> * Unstable patient: think of electric therapy.<br />
Treatment<br />Supraventricular Rhythm:<br />Stable = Drugs <br />Adenosine.<br />B blocker.<br />Ca  channel blocker.<br ...
Treatment<br />Ventricular Rhythm:<br />Stable = Drugs <br />Amiodarone.<br />Lidocaine.<br />Procainamide.<br />Unstable ...
Normal Venous Tracing<br />a ► Atrial Contraction<br />c ► Isometric (V) Contraction<br />x ►Mid-Systole<br />v ►Venous Fi...
Upcoming SlideShare
Loading in...5
×

CVS PSL and Monitoring

860

Published on

By Dr.Tariq

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
860
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
25
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "CVS PSL and Monitoring "

  1. 1. Cardiovascular Physiology and Monitoring<br /> Tariq AlZahrani M.D<br />Assistant professor <br /> College of medicine<br /> King Saud University<br />
  2. 2.
  3. 3. Coronary Circulation<br /><ul><li>Blood Supply</li></ul> RCA<br />LCA<br /><ul><li>Conduction System</li></ul> SAN <br /> AVN<br /><ul><li>Coronary Perfusion Pressure </li></ul>(50-120mmHg)<br /> ADBP – LVEDP<br />
  4. 4. Cardiac Cell Types<br />• Electrical cells <br />Generate and conduct impulses rapidly<br />• SA and AV nodes<br />• Nodal pathways<br />• No contractile properties<br />• Muscle (myocardial) cells<br /> Main function is contraction<br />• Atrial muscle<br />• Ventricular muscle<br />• Able to conduct electrical impulses<br />• May generate its own impulses with certain types of stimuli<br />
  5. 5. Atrio-ventricular (AV) node<br />Sino-atrial<br />(SA) node<br />BUNDLE<br />BRANCHES<br />PURKINJE FIBERS<br />
  6. 6. INTERCALATED DISC (TIGHT JUNCTION)<br />
  7. 7. Nerve impulse Terminology<br />• Resting state<br /> The relative electrical charges found on each side of the membrane at rest<br />• Net positive charge on the outside<br /> • Net negative charge on the inside<br />• Action Potential<br />Change in the electrical charge caused by<br />stimulation of a neuron<br />
  8. 8. Action Potential Terms<br />• Depolarization<br />The sudden reversal of electrical charges<br />across the neuron membrane, causing the<br />transmission of an impulse<br />• Minimum voltage must be met in order to do this<br />• Repolarization<br /> Return of electrical charges to their original<br />resting state<br />
  9. 9. Automaticity (P Cells)<br />Prepotential,<br /> Resting Potential, Diastolic Depolarization<br />Action Potential<br />Repolarization<br />Distribution Of P Cells<br />Factors That Affect Automaticity:<br />Sympathetic and parasympathetic outflow will affect the prepotential phase<br />Temperature<br />RA and SAN stretch<br />Hormones<br />Drugs<br />
  10. 10. Conduction Speed<br />A-V nodal conduction:<br />One way conduction<br />A-V nodal Delay (0.1 sec)<br />Factors Affecting Conductivity:<br />Sympathetic and vagal infuince<br />Temperature<br />Hormons<br />Ischemia<br />Acidosis<br />Drugs<br />
  11. 11. PHASE<br />Mechanical Response<br />0 = Rapid Depolarization<br /> (inward Na+ current) <br />1 = Overshoot<br /> (outward K+ current)<br />1<br />2<br />0<br />2 = Plateau<br /> (inward Ca++ current)<br />3 = Repolarization<br /> (outward K+ current)<br />0<br />MEMBRANE POTENTIAL (mV)<br />4 = Resting Potential<br />3<br />(outward K+ current)<br />(inward Na+ current) <br />4<br />-90<br />TIME<br />
  12. 12. ACTION POTENTIALS<br />VENTRICULULAR<br />CELL<br />SAN<br />1<br />2<br />0<br />0<br />0<br />3<br />0<br />3<br />4<br />-50<br />-50<br />MEMBRANE POTENTIAL (mV)<br />4<br />-100<br />-100<br />
  13. 13. Cardiac Myocyte<br /><ul><li>Structure
  14. 14. Ca++ Release
  15. 15. Excitation-Contraction Coupling</li></li></ul><li>The Fibrous A-V Ring<br />
  16. 16. THE ANATOMY OF BLOOD VESSELS<br />Layers:<br />Tunica interna (intima)<br />Tunica media<br />Tunica externa (adventitia)<br />
  17. 17. Comparison of Veins and Arteries<br />Arteries: Veins: <br />
  18. 18. The Distribution of Blood<br />
  19. 19. Cardiac Output<br />CO = SV x HR<br />• The amount of blood ejected from the<br />ventricle in one minute<br />• Stroke volume<br /> Amount of blood ejected from the ventricle in<br />one contraction<br />• Heart rate<br />The # of cardiac cycles in one minute<br />
  20. 20. Determination of Stroke Volume<br />• Preload<br /> Amount of blood delivered to the chamber<br /> Depend upon venous return to the heart<br /> Also dependent upon the amount of blood delivered to the ventricle by the atrium<br />• Contractility<br /> The efficiency and strength of contraction<br /> Frank Starling’s Law<br />• Afterload<br /> Resistance to forward blood flow by the vessel walls<br />
  21. 21. • End-diastolic volume (110-120 mL)<br />• End-systolic volume (40-50 mL)<br />• Stroke volume (70 mL)<br />• Ejection fraction (60%)<br />
  22. 22. Pressure-Volume Loops<br />
  23. 23. Volume Load ►<br />Pressure Load ►<br />
  24. 24. Regulation of Cardiovascular System<br />Neural Mechanisms<br />Vasoconstriction<br />Vaosdilation<br />Baroreceptors<br />Chemoreceptors<br />
  25. 25. Nerve Supply of the Conduction System<br />
  26. 26.
  27. 27. HORMONAL REGULATION<br />Epinephrine & Norepinephrine<br />From the adrenal medulla<br />Renin-angiotensin-aldosterone<br />Renin from the kidney<br />Angiotensin, a plasma protein<br />Aldosterone from the adrenal cortex<br />Vasopressin (Antidiuretic Hormone-ADH)<br /> _ ADH from the posterior pituitary<br />ANP from RA<br />
  28. 28. RENIN-ANGIOTENSIN-ALDOSTERONE MECHANISM<br />Angiotensinogen (renin substrate)<br />Angiotensin<br /> Aldosterone<br /> Kidney<br />sodium & water retention<br /> BP (Kidney)<br /> Renin<br />Vasoconstriction<br /> Venoconstriction<br />
  29. 29. VASOPRESSIN<br />(ANTIDIURETIC HORMONE)<br /> Hypothalamic<br />Osmoreceptors<br /> BP via Posterior Pituitary  Vasopressin (ADH)<br /> Vasoconstriction  Water<br />Venoconstriction Retention<br />
  30. 30.
  31. 31.
  32. 32.
  33. 33. How To interpret ECG?<br />1. Rate?<br />2. QRS Duration?<br />3. Stability?<br />
  34. 34. ECG limb leads<br />
  35. 35.
  36. 36. Normal ECG<br />
  37. 37. <ul><li>P wave corresponds to depolarization of SA node
  38. 38. QRS complex corresponds to ventricular Depolarization
  39. 39. T wave corresponds to ventricular repolarization
  40. 40. Atrial repolarization record is masked by the larger QRS complex</li></li></ul><li>Measurements<br />Small square = 0.04 sec.<br />Large square = 5 small square = 0.2 sec.<br />One second = 5 large square.<br />One minute = 300 large square. <br />
  41. 41. Remember This 3, 3, 3 and 5<br />P duration = 3 small sqs = 0.12 sec.<br />P height = 3 small sqs = 0.12 sec.<br />QRS duration=3 small sq=0.12 sec.<br />P-R interval = 5 small sq = 0.2 sec. <br />
  42. 42. Right ventricular hypertrophy (precordial leads)<br />
  43. 43. Left ventricular hypertrophy (precordial leads)<br />
  44. 44. QRS voltage decrease<br />• Myocardial infarction (decrease of<br /> excitable myocardium mass)<br />• Fluids in the pericardium (short-circuits of<br /> currents within pericardium)<br />• Pulmonary emphysema (excessive<br /> quantities of air in the lungs)<br />
  45. 45. J-point:<br />-Time point of completeddepolarization (zero reference)<br />-The junction of the QRS and the ST segment<br />ST-segment shift –<br />sign of current of<br />injury<br />
  46. 46. Injury currents: constant source<br />• Mechanical trauma<br />• Infectious process<br />• Ischemia<br />
  47. 47. Ischemia=ST depression or T-wave inversion<br /> Represents lack of oxygen to myocardial tissue<br />
  48. 48. Injury = ST elevation -- represents prolonged ischemia; significant when &gt; 1 mm above the baseline of the segment in two or more leads<br />
  49. 49. Infarct = Q wave— represented by first negative deflection after P wave; must be pathological to indicate MI<br />
  50. 50. What part of the heart is affected ?<br /><ul><li>II, III, aVF = </li></ul>Inferior Wall<br />I<br />II<br />III<br />aVR<br />aVL<br />aVF<br />V1<br />V2<br />V3<br />V4<br />V5<br />V6<br />
  51. 51. Which part of the heart is affected ?<br />I<br />II<br />III<br />aVR<br />aVL<br />aVF<br />V1<br />V2<br />V3<br />V4<br />V5<br />V6<br /><ul><li>Leads V1, V2, V3, and V4 =</li></ul>Anterior Wall MI<br />
  52. 52. What part of the heart is affected ?<br /><ul><li>I, aVL, V5 and V6</li></ul>Lateral wall of left ventricle<br />I<br />II<br />III<br />aVR<br />aVL<br />aVF<br />V1<br />V2<br />V3<br />V4<br />V5<br />V6<br />
  53. 53. I, aVL, V5 + V6 = <br /> Lateral Wall = <br /> Circumflex Artery<br /> Blockage<br />
  54. 54. Rate<br />If regular: Divide 300/ number of large squares between 2 Rs = HR<br />If irregular: count number of complexes in 6 sec. and multiply by 10<br /> - Normal 60 -100<br /> - Bradycardia &lt; 60 <br /> - Tachycardia &gt; 100<br />P = Sinus<br />No P = Non sinus<br />
  55. 55. Supraventricular Rhythm<br />Rate &gt; 100.<br />QRS: Narrow.<br />Stable or unstable.<br />Rate &lt; 60.<br />QRS: Narrow.<br />Stable or unstable.<br />Sinus bradycardia.<br />1st degree HB.<br />2nd degree HB.<br />Complete HB.<br />Sinus tachycardia.<br />PSVT.<br />Atrialflutter.<br />Atrial fibrillations.<br />
  56. 56. Supraventricular Rhythm: Tachycardia<br />Sinus Tachycardia<br />
  57. 57. Supraventricular Rhythm: Tachycardia<br />Paroxysmal SVT<br />
  58. 58. Supraventricular Rhythm: Tachycardia<br />Atrial Flutter<br />
  59. 59. Supraventricular Rhythm: Tachycardia<br />Atrial Fibrillations<br />
  60. 60. Supraventricular Rhythm: Bradycardia<br />Normal Sinus Rhythm<br />Sinus Bradycardia<br />
  61. 61. Supraventricular Rhythm: Bradycardia<br />1st Degree HB<br />
  62. 62. Supraventricular Rhythm: Bradycardia<br />2nd Degree HB: Mobitz 1 Wenckebach.<br />Progressive lengthening of the P-R interval with intermittent dropped beat. <br />
  63. 63. Supraventricular Rhythm: Bradycardia<br />2nd Degree HB: Mobitz 2<br />Sudden drop of QRS without prior P-R changes<br />
  64. 64. Supraventricular Rhythm: Bradycardia<br />3rd Degree HB<br />
  65. 65. The right bundle brunch block (precordial leads)<br />
  66. 66. Left bundle branch block (precordial leads)<br />
  67. 67. Characteristics of PVCs<br />• QRS prolongation due to slower conduction in the<br /> muscle fibers<br />• QRS high amplitude due to lack of synchrony of<br /> excitation of RV and LV which causes partial<br /> neutralization of their contribution to the ECG<br />• QRS and T-wave have opposite polarities, again due to slow conduction which causes repolarization to follow depolarization.<br />
  68. 68. Ventricular Rhythm<br />Idioventricular Rhythm.<br />
  69. 69. Ventricular Rhythm<br />Accelerated Idioventricular Rhythm.<br />
  70. 70. Ventricular Rhythm<br />
  71. 71. Ventricular Rhythm<br />
  72. 72. Ventricular Rhythm<br />Pacer Rhythm<br />
  73. 73. Stability<br /> * Stable patient: think of drug therapy.<br /> * Unstable patient: think of electric therapy.<br />
  74. 74. Treatment<br />Supraventricular Rhythm:<br />Stable = Drugs <br />Adenosine.<br />B blocker.<br />Ca channel blocker.<br />Digoxin.<br />Unstable = Electric<br />DC, Synchronized<br />
  75. 75. Treatment<br />Ventricular Rhythm:<br />Stable = Drugs <br />Amiodarone.<br />Lidocaine.<br />Procainamide.<br />Unstable = Electric<br />DC, Non Synchronized<br />
  76. 76.
  77. 77. Normal Venous Tracing<br />a ► Atrial Contraction<br />c ► Isometric (V) Contraction<br />x ►Mid-Systole<br />v ►Venous Filling (Atrial)<br />y ►Rapid Filling (Ventricular)<br />
  78. 78.
  79. 79.
  80. 80. THANK YOU<br />
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×