Simulating flood-peak probability in the Rhine basin and the effect of climate change Institute for Environmental Studies ...
Outline <ul><li>Introduction </li></ul><ul><li>Method </li></ul><ul><li>- GRADE </li></ul><ul><li>Results </li></ul><ul><l...
Introduction ACER <ul><li>Recent floods / droughts    major damage </li></ul><ul><li>Climate change </li></ul><ul><li>Nee...
Rhine basin <ul><li>Length: 1,320 km </li></ul><ul><li>Area 160,800 km 2 </li></ul><ul><li>Mean Q 2,206 m 3 /s </li></ul><...
Introduction <ul><li>IKSR – Flood Action Plan </li></ul><ul><li>D – NL Working Group on Floods </li></ul><ul><li>EU Floods...
Method
Method - Hydrological modelling <ul><li>Rainfall - runoff (HBV / VIC) </li></ul><ul><li>Implementing climate change scenar...
GRADE  – Generator of rainfall and discharge extremes <ul><li>Developed by Deltares, Waterdienst, KNMI </li></ul><ul><li>I...
Climate change impact Lobith – mean monthly change Transient run
Detention area – flooding
Extreme value analysis yearly max. Q – Gumbel fit <ul><li>100 yrs observed </li></ul><ul><li>1000 yrs resampled </li></ul>
GEV distribution fit
Results
Conclusion <ul><li>Method GRADE + extreme value analysis </li></ul><ul><ul><li>possibility to analyse ensemble of events /...
This reseach is part of a ‘Climate Changes Spatial Planning’ project Thank you Adaptive Capacity to Extreme events in the ...
Upcoming SlideShare
Loading in …5
×

Simulating flood-peak probability in the Rhine basin and the effect of climate change

547 views

Published on

Presented at FloodRisk 2008, October 2, 2008, Oxford

Published in: Technology, News & Politics
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
547
On SlideShare
0
From Embeds
0
Number of Embeds
24
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Simulating flood-peak probability in the Rhine basin and the effect of climate change

  1. 1. Simulating flood-peak probability in the Rhine basin and the effect of climate change Institute for Environmental Studies (IVM) Aline te Linde (IVM - VU / Deltares) Jeroen Aerts (IVM - VU) Oxford – October 2, 2008
  2. 2. Outline <ul><li>Introduction </li></ul><ul><li>Method </li></ul><ul><li>- GRADE </li></ul><ul><li>Results </li></ul><ul><li>- Climate change scenarios </li></ul><ul><li>- Extreme value analysis </li></ul><ul><li>Conclusions </li></ul>
  3. 3. Introduction ACER <ul><li>Recent floods / droughts  major damage </li></ul><ul><li>Climate change </li></ul><ul><li>Need for cross-boundary cooperation </li></ul><ul><li>GOAL: </li></ul><ul><li>test robustness of new cross-boundary adaptation strategies </li></ul>
  4. 4. Rhine basin <ul><li>Length: 1,320 km </li></ul><ul><li>Area 160,800 km 2 </li></ul><ul><li>Mean Q 2,206 m 3 /s </li></ul><ul><li>Maximum observed 12,600 m 3 /s </li></ul><ul><li>Safety levels vary from 1/200 to 1/1250 </li></ul><ul><li>58 million inhabitants (10 million flood plain) </li></ul><ul><li>High economic relevance </li></ul><ul><li>Flood management strategies since beginning 19 th century </li></ul>
  5. 5. Introduction <ul><li>IKSR – Flood Action Plan </li></ul><ul><li>D – NL Working Group on Floods </li></ul><ul><li>EU Floods Directive </li></ul><ul><li>Do not take into account climate change </li></ul><ul><li>Research available* </li></ul><ul><li>Assumption – infinite dike height </li></ul><ul><li>Large uncertainty probability extreme events </li></ul><ul><li>Do not take into account effect of measures </li></ul>Flood management Climate change * (Kwadijk 1993, 1998; Middelkoop, 2001; Kleinn, 2003, 2005; Te Linde, 2007) Simulate low probability floods, combine impact of climate change impact of dike height
  6. 6. Method
  7. 7. Method - Hydrological modelling <ul><li>Rainfall - runoff (HBV / VIC) </li></ul><ul><li>Implementing climate change scenario </li></ul><ul><li>Landuse change </li></ul><ul><li>1D Hydrodynamic model (SOBEK) </li></ul><ul><li>Measures </li></ul><ul><li>Dike heightening </li></ul><ul><li>Dike relocation </li></ul><ul><li>Landuse change flood plain (friction) </li></ul><ul><li>Bypass </li></ul><ul><li>Detention area </li></ul><ul><li>Flooding (calibrated on 2D model) </li></ul>Field capacity Wilting point
  8. 8. GRADE – Generator of rainfall and discharge extremes <ul><li>Developed by Deltares, Waterdienst, KNMI </li></ul><ul><li>Implement </li></ul><ul><li>Climate change scenarios </li></ul><ul><li>Measures </li></ul>X Locations
  9. 9. Climate change impact Lobith – mean monthly change Transient run
  10. 10. Detention area – flooding
  11. 11. Extreme value analysis yearly max. Q – Gumbel fit <ul><li>100 yrs observed </li></ul><ul><li>1000 yrs resampled </li></ul>
  12. 12. GEV distribution fit
  13. 13. Results
  14. 14. Conclusion <ul><li>Method GRADE + extreme value analysis </li></ul><ul><ul><li>possibility to analyse ensemble of events / bandwidth </li></ul></ul><ul><ul><li>narrows confidence interval extreme value distribution fit </li></ul></ul><ul><li>Impact of </li></ul><ul><ul><li>Detention area  effect strongly depends on event size </li></ul></ul><ul><ul><li>Climate change  peak events (flooding) expected to occur more frequently </li></ul></ul><ul><ul><li>Flooding  Q > 12,000 m 3 /s - upstream flooding – lowers max. Q up to 20% </li></ul></ul><ul><ul><li>(Dike heightening will increase extreme peak discharge downstream) </li></ul></ul><ul><li>Simulate combined effect </li></ul>
  15. 15. This reseach is part of a ‘Climate Changes Spatial Planning’ project Thank you Adaptive Capacity to Extreme events in the Rhine basin (ACER) More information on: www.klimaatvoorruimte.nl (english version) and www.adaptation.nlacer [email_address]

×